Polyphenolic Glycosides and Oligosaccharide Multiesters from the Roots of Polygala dalmaisiana

Satoko K obayashi, Toshio Miyase,* and Hiroshi Noguchi
School of Pharmaceutical Sciences, University of Shizuoka, 52-1, Yada, Shizuoka 422-8526, J apan

Received September 5, 2001

Abstract

Four new polyphenolic glycosides, dalmaisiones A-D (1-4), 16 new oligosaccharide multiesters, dalmaisioses A-P (5, 7-21), and one known tetrasaccharide multiester, reiniose G (6), were isolated from the roots of Polygala dalmaisiana. The structures of the new compounds were elucidated on the basis of chemical and spectroscopic evidence.

In the course of conducting a research program on the oligosaccharide esters from Polygala species, ${ }^{1}$ we have investigated P. dalmaisiana (P. oppositifolia \times P. myrtifolia) (Polygalaceae). No previous investigation has been reported on the oligosaccharide esters of P. dalmaisiana. We now report on an investigation of the roots of P. dalmaisiana, which led to isolation of four new compounds (1-4), 16 new oligosaccharide esters (5, 7-21), and a known oligosaccharide ester, reiniose G (6) (Chart 1). Known compounds were identified by comparison of their spectral data with reported data. ${ }^{2}$

Results and Discussion

The roots of P . dalmaisiana were extracted with MeOH . The MeOH extract was partitioned between $\mathrm{H}_{2} \mathrm{O}$ and diethyl ether. The $\mathrm{H}_{2} \mathrm{O}$ layer was passed through a porous polymer gel (Mitsubishi Diaion HP-20) column and eluted with a mixture of $\mathrm{H}_{2} \mathrm{O}$ and MeOH . The $70 \% \mathrm{MeOH}$ elute was separated further to afford compounds 1-21.

The FABMS of dalmaisioneA (1) gave pseudo molecular ion peaks at $\mathrm{m} / \mathrm{z} 589[\mathrm{M}+\mathrm{H}]^{+}$and $611[\mathrm{M}+\mathrm{Na}]^{+}$, compatible with a molecular formula $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{O}_{14}$. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{1} \mathrm{H}{ }^{-1} \mathrm{H}$ COSY spectra showed the presence of a 1,2-disubstituted benzene ring [$\delta 7.86$ (1 H , dd, J $=7.5,1.5$ $\mathrm{Hz}), 7.90(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=7.5,1.5 \mathrm{~Hz}), 7.58(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=7.5$, $1.5 \mathrm{~Hz}), 8.12(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.5,1.5 \mathrm{~Hz})$ in this order] and a 1,2,3-trisubstituted benzene ring [$\delta 7.66$ (1 H , dd, $\mathrm{J}=7.5$, $1.5 \mathrm{~Hz}), 7.46(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}), 7.92(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.5,1.5$ Hz) in this order] and two anomeric protons [$\delta 5.45$ (1H, $\mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}), 5.24(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.5 \mathrm{~Hz})]$. The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and HOHAHA difference spectra on irradiation at each anomeric proton signal and ROE experiments involving irradiation at each anomeric proton signal enabled us to assign all proton signals. Acid hydrolysis afforded la as an aglycone and D-glucose and L-rhamnose as sugar moieties. ${ }^{3}$ Compound la was methylated by diazomethane to afford the methyl ether $\mathbf{1 b}$. Compound $\mathbf{1 b}$ was identified as frutinone B by comparison of spectral data with reported data. ${ }^{4}$ The sugar sequence and the glycosidic site were decided by ROE and HMBC. In the ROE difference spectra of 1 , when the proton signals at $\delta 5.45$ due to $\mathrm{H}-1$ of Glc and $\delta 5.24$ due to $\mathrm{H}-1$ of Rha were irradiated, ROEs were observed at $\delta 7.66$ due to $\mathrm{H}-3^{\prime}$ and $\delta 3.68$ due to $\mathrm{H}-2$ of GIc, respectively. In the HMBC spectrum of $\mathbf{1}$, long-range correlations were observed between the proton signal due to $\mathrm{H}-1$ of Rha and the carbon signal due to $\mathrm{C}-2(\delta 76.2)$ of

[^0]Glc and between the proton signal due to $\mathrm{H}-1$ of Glc and the carbon signal due to $\mathrm{C}-2^{\prime}(\delta 143.8)$, respectively. Thus, the structure of dalmaisione A was determined to be $\mathbf{1}$.

Dalmaisione B(2) gave a pseudo molecular ion peak at $\mathrm{m} / \mathrm{z} 979[\mathrm{M}+\mathrm{Na}]^{+}$in a FABMS compatible with molecular formula $\mathrm{C}_{45} \mathrm{H}_{48} \mathrm{O}_{23}$. The ${ }^{1} \mathrm{H}$ NMR spectrum showed the presence of an aglycone ($\mathbf{l a}$), three monosaccharides [$\delta 5.56$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2 \mathrm{~Hz}), 5.18(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}), 4.43(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=7.5 \mathrm{~Hz})$], and a sinapoyl residue $[\delta 7.20(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=16$ $\mathrm{Hz}), 6.56(2 \mathrm{H}, \mathrm{s}), 6.02(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=16 \mathrm{~Hz}), 3.76(6 \mathrm{H}, \mathrm{s})]$. Acid hydrolysis afforded 1a, D-glucose, L-rhamnose, and sinapinic acid. The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and HOHAHA difference spectra on irradiation at each anomeric proton signal and ROE experiments involving irradiation at each anomeric proton signal enabled us to assign all proton signals. In the ROE difference spectra of $\mathbf{2}$, when the proton signals at $\delta 5.18$ due to $\mathrm{H}-1$ of GIc (inner), at $\delta 4.43$ due to $\mathrm{H}-1$ of Glc (terminal), and at $\delta 5.56$ due to $\mathrm{H}-1$ of Rha were irradiated, ROE s were observed at $\delta 7.79$ due to $\mathrm{H}-3^{\prime}$, at δ 4.08 due to $\mathrm{H}-6$ of GIc (inner), and at $\delta 3.85$ due to $\mathrm{H}-2$ of Glc (inner), respectively. In the HMBC spectrum of $\mathbf{2}$, longrange correlations were observed between the proton signal at $\delta 5.18$ due to $\mathrm{H}-1$ of GIc (inner) and the carbon signal at $\delta 145.9$ due to $\mathrm{C}-2$; between the proton signal $\delta 5.56$ due to H-1 of Rha and the carbon signal $\delta 77.3$ due to $\mathrm{C}-2$ of Glc (inner); between the proton signal $\delta 4.43$ due to $\mathrm{H}-1$ of Glc (terminal) and the carbon signal $\delta 71.6$ due to $\mathrm{C}-6$ of Glc (inner); between the proton signals $\delta 4.15$ and 4.78 due to $\mathrm{H}_{2}-6$ of GIc (terminal) and the sinapoyl carbonyl carbon signal $\delta 168.5$, respectively. Thus, the structure of dalmaisione B was determined to be 2.

Dalmaisione C (3) gave NMR data similar to those of $\mathbf{1}$. In the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum, a 1,2-di substituted benzene ring [$\delta 7.43(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8,1.5 \mathrm{~Hz}), 7.84(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=8,1.5$ $\mathrm{Hz}), 7.55(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=8,1.5 \mathrm{~Hz}), 8.45(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8,1.5$ Hz) in this order] and a 1,2,3-trisubstituted benzene ring $[\delta 7.70(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8,1.5 \mathrm{~Hz}), 7.49(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}), 7.91$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8,1.5 \mathrm{~Hz}$) in this order] were observed other than two anomeric protons [$\delta 5.47$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}$), 5.38 $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2 \mathrm{~Hz})$]. Compound 3 afforded D-glucose and L-rhamnose on acid hydrolysis. After assignment of all proton signals by ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and HOHAHA difference spectra, the sugar sequence was determined to be $\alpha-L-$ rhamnopyranosyl-($1 \rightarrow 2$)- β-D-glucopyranosyl using ROE and HMBC spectra. On irradiation of the glucosyl anomeric proton signal at $\delta 5.47$, ROE was observed at the aromatic proton signal at $\delta 7.70$, which had an HMBC correlation to the carbon signal at $\delta 120.3$. The carbon signal at $\delta 120.3$ was correlated to the proton signal $\delta 7.91$ in the HMQC

Chart 1

R
4 Gic - 6
4a H

spectrum. The proton signal at $\delta 7.91$ had a correlation to the carbon signal at $\delta 175.3$ due to $\mathrm{C}-4$ of the aglycone. Thus, the structure of dalmaisione C was determined to be 3.
DalmaisioneD (4) was shown to have molecular formula $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{13}$ by $\mathrm{FABMS}\left([\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z} 563\right.$), which was consistent with the ${ }^{13} \mathrm{C}$ NMR spectrum. Acid hydrolysis afforded 4 a and D -glucose. Two 1,2 -disubstituted benzene rings [$\delta 8.06(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.5,1.5 \mathrm{~Hz}$), $7.50(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=$ $7.5,1.5 \mathrm{~Hz}), 7.82(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=7.5,1.5 \mathrm{~Hz}), 7.73(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ $=7.5,1.5 \mathrm{~Hz}$) in this order; 7.92 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.5,1.5 \mathrm{~Hz}$), $7.22(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=7.5,1.5 \mathrm{~Hz}), 7.57(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=7.5,1.5$ $\mathrm{Hz}), 7.49(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.5,1.5 \mathrm{~Hz})$ in this order] and an olefinic proton signal at $\delta 7.10(1 \mathrm{H}, \mathrm{s})$ were observed other than two monosaccharides in the ${ }^{1} \mathrm{H}$ NMR spectrum. All proton signals were assigned by the aid of ${ }^{1} \mathrm{H}^{1} \mathrm{H}$ COSY and HOHAHA difference spectra. In the ROE spectra, irradiation at the olefinic proton signal at $\delta 7.10$ enhanced the aromatic proton signal at $\delta 7.92$, and irradiation at the anomeric proton signal at $\delta 5.10$ enhanced the aromatic proton signal at $\delta 7.49$. In the HMBC spectrum, long-range
correlations were observed between a proton signal at δ 7.10 and carbon signals at δ 177.1, 123.1 (W-type longrange coupling ${ }^{5}$), 160.4, 120.6, 155.3, and an anomeric proton signal at $\delta 5.10$ and carbon signal at $\delta 116.0$, and aromatic proton signals at $\delta 7.73$ and 8.06 (W-type longrange coupling) and a carbonyl carbon signal at $\delta 177.1$ (Figure 2). Sugar sequence was decided by the ROE spectrum to be gl ucopyranosyl-($1 \rightarrow 6$)-glucopyranosyl. These data led us to assign the structure of dalmaisione D as 4.
Dalmaisiose A (5) has a molecular formula of $\mathrm{C}_{38} \mathrm{H}_{46} \mathrm{O}_{20}$ on the basis of FABMS [M + Na] ${ }^{+} \mathrm{m} / \mathrm{z} 845$. The UV and ${ }^{1} \mathrm{H}$ NMR spectra showed the presence of an acetyl, a cinnamoyl, and a p-coumaroyl residue. Hydrolysis with alkali and acid afforded acetic acid, p-coumaric acid, and cinnamic acid as ester moieties and D-glucose and Dfructose as sugar moieties. ${ }^{3,6}$ All proton signals were assigned by the aid of ${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ COSY and HOHAHA difference spectra. In the HMBC spectrum, correlations were observed at the signals $\mathrm{H}_{2}-6$ ($\delta 4.14,4.09$) of Glcl/ acetyl carbonyl carbon ($\delta 172.7$), H-4 ($\delta 4.85$) of Glc1/ carbonyl carbon at $\delta 167.5$ which was assigned to the

Table 1. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Data of Compound $\mathbf{1 - 3}$ at $35{ }^{\circ} \mathrm{C}$ d

		$1{ }^{\text {a }}$		$2^{\text {b }}$		$3{ }^{\text {b }}$	
		${ }^{1} \mathrm{H}$	${ }^{13} \mathrm{C}$	${ }^{1} \mathrm{H}$	${ }^{13} \mathrm{C}$	${ }^{1} \mathrm{H}$	${ }^{13} \mathrm{C}$
aglycon moiety							
	3		104.7		105.4		105.7
	4		$172.5^{\text {A }}$		$174.9{ }^{\text {A }}$		$175.3{ }^{\text {A }}$
	5	8.12 (dd, 7.5, 1.5) ${ }^{\text {A }}$	125.5	8.15 (dd, 8, 2) ${ }^{\text {A }}$	127.1	7.91 (dd, 8, 1.5) ${ }^{\text {A }}$	120.3
	6	7.58 (td, 7.5, 1.5) ${ }^{\mathrm{B}}$	126.5	7.52 (td, 8, 2) ${ }^{\text {B }}$	127.7	7.49 (t, 8) ${ }^{\mathrm{B}}$	127.6
	7	7.90 (td, 7.5, 1.5) ${ }^{\text {C }}$	135.0	7.83 (td, 8, 2) ${ }^{\text {c }}$	$136.4{ }^{\text {A }}$	7.70 (dd, 8, 1.5) ${ }^{\text {c, \# }}$	123.8
	8	7.86 (dd, 7.5, 1.5) ${ }^{\text {D }}$	118.4	7.65 (dd, 8, 2) ${ }^{\text {D }}$	119.3		$147.3^{\text {B, }, ~ Н ~}$
	9		$154.1^{\text {A,C }}$		$155.9^{\text {A }}$		$147.2^{\text {C }}$
	10		$124.0{ }^{\text {B, }}$		$125.2^{\text {B, }}$		$126.5^{\text {B }}$
	11		154.9		158.4		158.6
	$1{ }^{\prime}$		$143.6{ }^{\text {E,G }}$		$145.4{ }^{\text {E, G }}$		$155.6{ }^{\text {D,F,G }}$
	2		143.8 ${ }^{\text {F,H }}$		145.9F.H	7.43 (dd, 8, 1.5) ${ }^{\text {D }}$	118.1
	$3{ }^{\prime}$	7.66 (dd, 7.5, 1.5) ${ }^{\text {E, } \dagger}$	120.1	7.79 (dd, 8, 2) ${ }^{\text {E, \# }}$	124.4	7.84 (td, 8, 1.5) ${ }^{\text {E }}$	137.1
	4^{\prime}	7.46 (t 7.5) ${ }^{\text {F }}$	124.5	7.31 (t, 8) ${ }^{\text {F }}$	126.3	7.55 (td, 8, 1.5) ${ }^{\text {F }}$	126.7
	5^{\prime}	7.92 (dd, 7.5, 1.5) ${ }^{\text {G }}$	116.5	7.70 (dd, 8, 2) ${ }^{\text {G }}$	118.3	8.45 (dd, $8,1.5)^{\mathrm{G}}$	126.4
	6		114.2^{F}		$115.2^{\text {F }}$		$114.8{ }^{\text {D,F,G }}$
sugar moiety							
	Glc-1	$5.45(\mathrm{~d}, 7.5)^{\mathrm{H}, \#}$	97.3	5.18 (d, 7.5) ${ }^{\mathrm{H}, \#}$	101.2	5.47 (d, 7.5) ${ }^{\text {H,\# }}$	101.4
	2	3.68 (dd, 8.5, 7.5)*	76.21	3.85 (dd, 9, 7.5)*	$77.3{ }^{\text {L }}$	3.86 (dd, 9.5, 7.5)*	80.8
	3	3.54 (dd, 8.5, 8.5)	77.6	3.71 (dd, 9, 9)	79.7	3.69 (dd, 9.5, 9.5)	78.6
	4	3.27 (dd, 8.5, 8.5)	69.6	3.35 (dd, 9, 9)	72.4	3.51 (dd, 9.5, 9.5)	71.4
	5	3.42 (m)	77.0	3.95 (m)	77.1	(3.46 (m)	78.3
	6	$3.47 c$	60.4		71.6		62.4
		3.66^{c}		$4.08 \text { (br d, 12) }$		$3.83 \text { (dd, 12.5, 2.5) }$	
	Glc (terminal)-1			4.43 (d, 7.5) ${ }^{\text {¢ }}$	$105.9{ }^{1}$		
	2			$3.28{ }^{\text {c }}$	75.5		
	3			3.40 (dd, 9, 9)	77.9		
	4			3.52 (dd, 9, 9)	71.2		
	5			$3.45 \text { (m) }$	75.5		
	6			$4.15(d d, 12.5,3.5)$	63.0		
	Rha-1		100.1	5.56 (d, 2) ${ }^{\text {L, },}$	101.2	5.38 (d, 2) ${ }^{1, *}$	103.0
	2	3.73 (dd, 3, 1)	70.4	3.99 (dd, 3.5, 2)	72.3	4.04 (dd, 3, 2)	72.2
	3	3.34 (dd, 9, 3)	70.4	3.85 (dd, 10, 3.5)	72.4	3.64 (dd, 10, 3)	72.2
	4	3.15 (dd, 9, 9)	72.0	3.42 (dd, 10, 10)	74.4	3.26 (dd, 10, 10)	73.9
	5	3.73 (m)	68.5	4.20 (m)	70.3	3.78 (m)	70.2
	6	1.14 (d, 6)	18.0	1.34 (d, 6)	18.5	0.92 (d, 6)	17.9
$\begin{aligned} & \text { acid } \\ & \text { (at C-6 of GIc2) } \end{aligned}$							
	α				$168.5{ }^{\text {, } \mathrm{K}, \mathrm{N}}$		
	β			6.02 (d, 16) ${ }^{\text {M, }, ~}$	115.6		
	γ			7.20 (d, 16) ${ }^{\mathrm{N}, \mathrm{t}}$	146.50		
	1			.20(d, 16)	126.3^{M}		
	2,6			6.56 (s) ${ }^{0, t, \ddagger}$	106.5		
	3,5				149.0^{P}		
	3, 4				$139.4{ }^{\circ}$		
	OMe			3.76 (s) ${ }^{\text {P, }}$,	56.9		

${ }^{a} \operatorname{In}$ DMSO- $d_{6} .^{b} \operatorname{In} C_{3} O D .{ }^{c}$ Overlapped with other signals. ${ }^{d}$ Assigned with the aid of HOHAHA difference, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, HMQC , and HMBC spectra. ROEs were observed between protons that have the same (${ }^{\#, *, \S, \uparrow, \ddagger, ף) \text { in each column. Long-range correlations were }}$ observed between protons and carbons that have the same letter ($\mathrm{A}, \mathrm{B}, \ldots, \mathrm{P}$) in the same compounds.

Figure 1. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ long-range correlations and ROEs of 7.
α-carbon of a p-coumaroyl residue by HMBC correlation with sequence of the aromatic proton, $\mathrm{H}-3(\delta 5.77)$ of $\mathrm{Fru} /$

\sim ROE
Figure 2. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ long-range correlations and ROEs of 4.
carbonyl carbon at $\delta 167.8$ which was assigned to the α-carbon of a cinnamoyl residue, and $\mathrm{H}-1$ ($\delta 5.42$) of GIcl/ anomeric carbon ($\delta 107.2$) of Fru and $\mathrm{H}-1(\delta 4.43$) of GIc2/ C-4 (δ 84.4) of Fru. Accordingly, 5 was confirmed to be β-D-glucopyranosyl-(1 $\rightarrow 4$)-(3-O-cinnamoyl)- β-d-fructofuranosyl$(2 \rightarrow 1)-(6-O-a c e t y l-4-O-p-c o u m a r o y l)-\alpha-D-g l u c o p y r a n o s i d e$.
The NMR spectra of dalmaisiose B (7) were similar to those of reiniose $G(6)^{2}$ except for the presence of a rhamnosyl residue. After assignment of all proton signals

Table 2. ${ }^{1} \mathrm{H}$ NMR Data of Compounds $\mathbf{7 - 1 1}$ in $\mathrm{CD}_{3} \mathrm{OD}$ at $35^{\circ} \mathrm{C}^{\mathrm{b}}$

		7	8	9	10	11
sugar moiety						
	Glcl-1	5.85 (d, 3) ${ }^{\text {A }}$	5.86 (d, 3.5) ${ }^{\text {A }}$	5.86 (d, 3.5) ${ }^{\text {A }}$	5.86 (d, 3.5) ${ }^{\text {A }}$	5.86 (d, 5) ${ }^{\text {A }}$
	-2	3.81 (dd, 8.5, 3)\#	3.82 (dd, 10, 3.5)\#	3.81 (dd, 10, 3.5)\#	3.81 (dd, 9, 3.5)	3.81 (dd, 10, 5)\#
	-3	3.95 (dd, 8.5, 8.5)*	3.97 (dd, 10, 10)*	4.03 (dd, 10, 10)*	4.03 (dd, 9, 9)	4.03 (dd, 10, 10)*
	-4	5.01 (dd, 10, 8.5) ${ }^{\text {B }}$	5.02 (dd, 10, 9) ${ }^{\text {B }}$	5.00 (dd, 10, 8.5) ${ }^{\text {B }}$	5.00 (dd, 9, 9) ${ }^{\text {B }}$	5.00 (dd, 10, 10) ${ }^{\text {B }}$
	-5	4.39 (m)				
	-6	4.14 (dd, 12, 5.5) ${ }^{\text {c }}$	4.14 (dd, 12.5, 5.5) ${ }^{\text {c }}$	4.14 (dd, 12.5, 5) ${ }^{\text {C }}$	4.14 (dd, 12.5, 5.5) ${ }^{\text {C }}$	4.14 (dd, 12.5, 5) ${ }^{\text {c }}$
		$4.20^{\text {a }}$	4.20 (dd, 12.5, 3.5)	4.20 (dd, 12.5, 3.5) ${ }^{\text {c }}$	4.21 (dd, 12.5, 3)	$4.20^{\text {a }}$
	Glc2-1	4.60 (d, 7.5) ${ }^{\text {D, }}$ \#	4.60 (d, 7.5) ${ }^{\text {D, } \#}$	4.59 (d, 7.5) ${ }^{\text {D, \# }}$	4.59 (d, 7.5) ${ }^{\text {D }}$	4.59 (d, 7.5) ${ }^{\text {D, \# }}$
	-2	$3.32{ }^{\text {a }}$	$3.32{ }^{\text {a }}$	$3.31{ }^{\text {a }}$	$3.32{ }^{\text {a }}$	$3.32{ }^{\text {a }}$
	-3	$3.32{ }^{\text {a }}$	$3.32{ }^{\text {a }}$	$3.31{ }^{\text {a }}$	$3.32{ }^{\text {a }}$	$3.32{ }^{\text {a }}$
	-4	$3.32^{\text {a }}$	$3.32^{\text {a }}$	$3.31{ }^{\text {a }}$	$3.32{ }^{\text {a }}$	$3.32{ }^{\text {a }}$
	-5	$3.32{ }^{\text {a }}$	$3.32{ }^{\text {a }}$	$3.31{ }^{\text {a }}$	$3.31{ }^{\text {a }}$	$3.32{ }^{\text {a }}$
	-6	3.71 (m)	3.72 (dd, 12.5, 5.5)	3.71 (d, 12)	3.71 (d, 12)	$3.72{ }^{\text {a }}$
		$3.94{ }^{\text {a }}$	$3.95{ }^{\text {a }}$	3.93 (d, 12)	$3.93{ }^{\text {a }}$	3.93 (d, 11)
	Glc3-1	4.49 (d, 8) ${ }^{\text {E,* }}$	4.50 (d, 7.5) ${ }^{\mathrm{E}, *}$	4.46 (d, 7.5) ${ }^{\text {E, },}$	4.46 (d, 7.5) ${ }^{\text {E }}$	4.46 (d, 7.5) ${ }^{\text {E,* }}$
	-2	2.99 (dd, 9, 8)	3.00 (dd, 8.5, 7.5)	3.01 (dd, 8.5, 7.5)	3.01 (dd, 8.5, 7.5)	3.01 (dd, 8.5, 7.5)
	-3	3.17 (dd, 9, 9)	3.18 (dd, 8.5, 8.5)	3.20 (dd, 8.5, 8.5)	3.20 (dd, 8.5, 8.5)	3.20 (dd, 8.5, 8.5)
	-4	$3.18{ }^{\text {a }}$	3.21 (dd, 8.5, 8.5)	3.17 (dd, 8.5, 8.5)	3.15 (dd, 8.5, 8.5)	3.16 (dd, 8.5, 8.5)
	-5	3.08 (m)	3.10 (m)	$3.02{ }^{\text {a }}$	3.03 (m)	$3.02{ }^{\text {a }}$
	-6	$3.95{ }^{\text {a }, ~} \mathrm{~F}$	3.98 (dd, 12.5, 5.5)F	3.43 (dd, 12, 5)	3.44 (dd, 12, 5)	3.43 (dd, 12.5, 5)
		$4.03{ }^{\text {a }}$	4.07 (dd, 12.5, 3.5)	3.58 (dd, 12, 4)	3.61 (dd, 12, 3)	3.58 (dd, 12.5, 2.5)
	Fru-1	4.20 (d, 12) ${ }^{\text {G }}$	4.21 (d, 12.5) ${ }^{\mathrm{G}}$	4.20 (d, 12.5) ${ }^{\text {F }}$	4.19 (d, 12.5) ${ }^{\text {F }}$	4.20 (d, 12) ${ }^{\text {F }}$
		4.70 (d, 12) ${ }^{\text {G }}$	4.72 (d, 12.5) ${ }^{\text {G }}$	$4.71(\mathrm{~d}, 12.5)^{\mathrm{F}}$	4.70 (d, 12.5) ${ }^{\text {F }}$	$4.70 \mathrm{a}, \mathrm{F}$
	-3	5.73 (d, 8) ${ }^{\mathrm{H}}$	5.73 (d, 8) ${ }^{\text {H }}$	$5.74(\mathrm{~d}, 8)^{\mathrm{G}}$	$5.74(\mathrm{~d}, 8)^{\mathrm{G}}$	5.74 (d, 8) ${ }^{\text {G }}$
	-4	4.43 (dd, 8, 8)	4.44 (dd, 8, 8)			
	-5	4.07 (m)	$4.07{ }^{\text {a }}$	4.07 (m)	4.07 (m)	4.08 (m)
	-6	$3.86{ }^{\text {a }}$	$3.87{ }^{\text {a }}$			
		$3.86{ }^{\text {a }}$	$3.87{ }^{\text {a }}$			
	Rha-1	5.53 (d, 2) ${ }^{1, \$}$	5.48 (d, 2) ${ }^{1, \$}$	5.52 (d, 2) ${ }^{\mathrm{H}, \S}$	5.46 (d, 2) ${ }^{\mathrm{H}, \S}$	$5.52(\mathrm{~d}, 2)^{\mathrm{H}, \S}$
	-2	4.02 (dd, 3, 2)	4.09 (dd, 3, 2)	4.02 (dd, 3, 2)	4.08 (dd, 3, 2)	4.02 (dd, 3, 2)
	-3	3.85 (dd, 9, 3)	$3.91{ }^{\text {a }}$	3.85 (dd, 9, 3)	3.90 (dd, 9, 3)	3.85 (dd, 9, 3)
	-4	3.48 (dd, 9, 9)	3.47 (dd, 9, 9)	3.48 (dd, 9, 9)	3.47 (dd, 9, 9)	3.48 (dd, 9, 9)
	-5	3.62 (m)	3.75 (m)	3.63 (m)	3.75 (m)	3.63 (m)
	-6	1.23 (d, 6)	1.24 (d, 6)	1.24 (d, 6)	1.24 (d, 6)	1.24 (d, 6)
ester moiety						
(at C-6 of Glc1)	Ac	2.06 (s) ${ }^{\text {J }}$	2.06 (s) ${ }^{\text {J }}$	2.07 (s) ${ }^{1}$	2.07 (s) ${ }^{1}$	2.07 (s) ${ }^{1}$
(at C-6 of Glc3)	Ac	1.59 (s) ${ }^{\text {K }}$	1.58 (s) ${ }^{\text {K }}$			
(at C-4 of Glcl)	β	6.31 (d, 16) ${ }^{\text {L }}$	6.34 (d, 16) ${ }^{\text {L }}$	6.41 (d, 16)	6.44 (d, 16)	6.41 (d, 16)
	γ	7.59 (d, 16) ${ }^{\text {M }}$	7.59 (d, 16) ${ }^{\text {M }}$	7.62 (d, 16) ${ }^{\text {K }}$	7.61 (d, 16) ${ }^{\text {K }}$	7.62 (d, 16) ${ }^{K}$
	2	7.56 (d, 8) ${ }^{\mathrm{N}}$	7.27 (d, 2) ${ }^{\text {N, }}$ (7.60 (d, 8) ${ }^{\text {L }}$	7.31 (d, 1.5) ${ }^{\text {L, }}$ (7.60 (d, 8) ${ }^{\text {L }}$
	3	7.15 (d, 8) ${ }^{0}$		7.15 (d, 8) ${ }^{\text {M,§ }}$		7.15 (d, 8) ${ }^{\text {M,§ }}$
	5	7.15 (d, 8) ${ }^{0, §}$	7.19 (d, 8) ${ }^{0, §}$	7.15 (d, 8) ${ }^{\text {M,§ }}$	7.19a,M	7.15 (d, 8) ${ }^{\text {M,§ }}$
	6	7.56 (d, 8) ${ }^{\text {N }}$	7.13 (dd, 8, 2) ${ }^{\text {P }}$	7.60 (d, 8) ${ }^{\text {L }}$	7.19a,N,§	7.60 (d, 8) ${ }^{\text {L }}$
	OMe		3.93 (s) ${ }^{\text {Q,t }}$		3.93 (s) ${ }^{\text {0,t }}$	
(at C-6 of Glc3)	β					
	γ					
	3					
	5					
	6					
	OMe					
(at C-1 of Fru)	β	6.37 (d, 16) ${ }^{\text {P }}$	6.40 (d, 16) ${ }^{\text {R }}$	$6.36(d, 16)^{N}$	6.36 (d, 16) ${ }^{\text {P }}$	6.41 (d, 16) ${ }^{\text {N }}$
	γ	7.68 (d, 16) ${ }^{\text {Q }}$	7.48 (d, 16) ${ }^{\text {S }}$	$7.68(\mathrm{~d}, 16)^{0}$	7.68 (d, 16) ${ }^{\text {Q }}$	7.68 (d, 16) ${ }^{\text {O}}$
	2	7.43 (d, 8) ${ }^{\mathrm{R}}$	7.20 (d, 2) ${ }^{\text {T, } \ddagger}$	7.43 (d, 8) ${ }^{\text {P }}$	7.43 (d, 8) ${ }^{\mathrm{R}}$	7.20 (d, 2) ${ }^{\text {P, }}$ +
	3	6.81 (d, 8) ${ }^{\text {S }}$		6.81 (d, 8) ${ }^{\text {Q }}$	6.81 (d, 8) ${ }^{\text {S }}$	
	5	$6.81(d, 8)^{\text {S }}$	6.81 (d, 8) ${ }^{\text {U }}$	6.81 (d, 8)	6.81 (d, 8)	6.82 (d, 8) ${ }^{\text {Q }}$
	6	7.43 (d, 8) ${ }^{R}$	7.02 (dd, 8, 2) ${ }^{\text {v }}$	7.43 (d, 8)	7.43 (d, 8)	7.04 (dd, 8, 2) ${ }^{\text {R }}$
	OMe		3.91 (s) ${ }^{\text {W, }} \ddagger$			3.91 (s) ${ }^{\text {s,t }}$
(at C-3 of Fru)	2, 6	8.18 (dd, 7.5, 1) ${ }^{\top}$	8.18 (dd, 7.5, 1) ${ }^{\mathrm{x}}$	8.16 (dd, 8, 2) ${ }^{\text {R }}$	8.16 (dd, 7.5, 1) ${ }^{\top}$	8.16 (dd, 7.5, 1) ${ }^{\top}$
	3, 5	7.59 (t, 7.5) ${ }^{\text {U }}$	$7.59(\mathrm{t}, 7.5)^{Y}$	7.58 (t, 8) ${ }^{\text {s }}$	7.58 (t, 7.5) ${ }^{\text {U }}$	7.58 (t, 7.5) ${ }^{\text {U }}$
	4	7.71 (tt, 7.5, 1)	7.61 (t, 7.5)	7.65 (tt, 8, 2)	7.61 (tt, 7.5, 1)	7.63 (tt, 7.5, 1)

[^1]by ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and HOHAHA difference spectra, irradiation of a rhamnosyl anomeric proton signal at $\delta 5.53$ (1H, $\mathrm{d}, \mathrm{J}=2 \mathrm{~Hz}$) enhanced the signal area of an aromatic proton signal at $\delta 7.15(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz})$, which was assigned to $\mathrm{H}-3$ and $\mathrm{H}-5$ of the p-coumaroyl residue attached to $\mathrm{C}-4$ of α-D-glucose (Figure 1). Hydrolysis with alkali and acid gave acetic acid, p-coumaric acid, and benzoic acid as ester moieties and D-glucose, D-fructose, and L-rhamnose as sugar moieties.

The NMR spectra of dalmaisioses $\mathrm{C}-\mathrm{G}(\mathbf{8}-\mathbf{1 2})$ were similar to those of $\mathbf{7}$, showing acetyl(s), a benzoyl, and two oxycinnamoyl residues as ester moieties and a rhamnosyl, a fructosyl, and three glucosyl residues as sugar moieties. The binding sites of these residues were decided with the aid of ROE and HMBC after assignment of all proton signals by ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and HOHAHA difference spectra. The structures of dalmaisioses $\mathrm{C}-\mathrm{G}$ were determined to be 8-12, respectively.

Table 3. ${ }^{1} \mathrm{H}$ NMR Data of Compounds $\mathbf{1 2 - 1 6}$ in $\mathrm{CD}_{3} \mathrm{OD}$ at $35^{\circ} \mathrm{C}^{\mathrm{b}}$

		12	13	14	15	16
sugar moiety						
	Glc1-1	5.86 (d, 3.5) ${ }^{\text {A }}$	5.84 (d, 3.5) ${ }^{\text {A }}$	5.84 (d, 3.5) ${ }^{\text {A }}$	5.82 (d, 3.5) ${ }^{\text {A }}$	5.84 (d, 3) ${ }^{\text {A }}$
	-2	3.82 (dd, 9, 3.5)\#	3.82 (dd, 10, 3.5)\#	3.82 (dd, 10, 3.5)\#	3.79 (dd, 9, 3.5)\#	3.83 (dd, 9, 3)
	-3	4.03 (dd, 9, 9)*	3.99 (dd, 10, 10)*	3.97 (dd, 10, 10)*	3.99 (dd, 9, 9)*	3.97 (dd, 9, 9)
	-4	5.00 (dd, 10.5, 9) ${ }^{\text {B }}$	5.02 (dd, 10, 9) ${ }^{\text {B }}$	5.03 (dd, 10, 10) ${ }^{\text {B }}$	5.03 (dd, 9, 9) ${ }^{\text {B }}$	5.03 (dd, 9, 9) ${ }^{\text {B }}$
	-5	4.39 (m)	4.38 (m)	4.38 (m)	$4.20^{\text {a }}$	4.38 (m)
	-6	4.14 (dd, 12.5, 5.5) ${ }^{\text {c }}$	$4.13 \mathrm{a}, \mathrm{C}$	$4.144^{\text {a, }}$	3.54 (dd, 12.5, 5)	$4.14{ }^{\text {a, }}$
		4.21 (dd, 12.5, 3) ${ }^{\text {c }}$	$4.13{ }^{\text {a }}$	$4.14{ }^{\text {a }}$	3.66 (dd, 12.5, 3.5)	$4.14{ }^{\text {a }}$
	Glc2-1	4.60 (d, 7.5) ${ }^{\text {D, }}$ \#	4.62 (d, 7.5) ${ }^{\text {D, \# }}$	4.63 (d, 8) ${ }^{\text {D, }}$	4.62 (d, 7.5) ${ }^{\text {c, \# }}$	4.63 (d, 7.5) ${ }^{\text {D }}$
	-2	$3.32{ }^{\text {a }}$	$3.35{ }^{\text {a }}$	$3.34{ }^{\text {a }}$	$3.33{ }^{\text {a }}$	3.34 (dd, 10, 7.5)
	-3	$3.32{ }^{\text {a }}$	$3.35{ }^{\text {a }}$	$3.34{ }^{\text {a }}$	$3.33{ }^{\text {a }}$	$3.31{ }^{\text {a }}$
	-4	$3.32{ }^{\text {a }}$	$3.35{ }^{\text {a }}$	$3.34{ }^{\text {a }}$	$3.33{ }^{\text {a }}$	$3.31{ }^{\text {a }}$
	-5	$3.32{ }^{\text {a }}$	$3.35{ }^{\text {a }}$	$3.34{ }^{\text {a }}$	$3.33{ }^{\text {a }}$	$3.31{ }^{\text {a }}$
	-6	3.72 (dd, 12, 3.5)	$3.72^{\text {a }}$	$3.72{ }^{\text {a }}$	3.73 (dd, 12.5, 5.5)	3.72 (dd, 12, 3)
		$3.93{ }^{\text {a }}$	3.94 (dd, 12, 2)	3.94 (br d, 12.5)	3.93 (dd, 12.5, 5)	3.94 (br d, 12)
	Glc3-1	4.47 (d, 8) ${ }^{\text {E,* }}$	4.52 (d, 8) ${ }^{\text {E,* }}$	4.52 (d, 8) ${ }^{\text {E,* }}$	4.50 (d, 8) ${ }^{\text {D,* }}$	4.53 (d, 8) ${ }^{\text {E }}$
	-2	3.01 (dd, 8.5, 8)	3.06 (dd, 9, 8)			
	-3	3.20 (dd, 8.5, 8.5)	3.21 (dd, 9, 9)	3.21 (dd, 9, 9)	3.20 (dd, 9, 9)	3.21 (dd, 9, 9)
	-4	3.15 (dd, 8.5, 8.5)	3.30 (dd, 9, 9)	3.34 (dd, 9, 9)	$3.33{ }^{\text {a }}$	3.33 (dd, 9, 9)
	-5	3.05 (m)	3.15 (m)	3.12 (m)	3.10 (m)	3.13 (m)
	--6	3.44 (dd, 12, 5)	4.09 (dd, 12.5, 3)	$4.07 \mathrm{a}, \mathrm{F}$	4.08 (dd, 12.5, 2.5)	3.04 (dd, 12, 2.5)
		3.61 (dd, 12, 3)	4.18 (dd, 12.5, 4) ${ }^{\text {F }}$	$4.23 \mathrm{a}, \mathrm{F}$	4.19 (dd, 12.5, 3.5) ${ }^{\text {E }}$	4.23 (dd, 12, 3.5) ${ }^{\text {F }}$
	Fru-1	4.19 (d, 12) ${ }^{\text {F }}$	4.22 (d, 12) ${ }^{\text {G }}$	4.22 (d, 12) ${ }^{\text {G }}$	4.22 (d, 12) ${ }^{\text {F }}$	4.22 (d, 2.5) ${ }^{\text {G }}$
		4.72 (d, 12) ${ }^{\text {F }}$	4.71 (d, 12) ${ }^{\text {G }}$	4.70 (d, 12) ${ }^{\mathrm{G}}$	$4.72^{\text {a }}$	$4.72{ }^{\text {a,G }}$
	-3	$5.475(d, 8){ }^{\text {G }}$	5.73 (d, 8) ${ }^{\mathrm{H}}$	5.73 (d, 8) ${ }^{\text {H }}$	5.72 (d, 8) ${ }^{\text {G }}$	$5.74(\mathrm{~d}, 8)^{\mathrm{H}}$
	-4	4.44 (dd, 8, 8)	4.43 (dd, 8, 8)	4.44 (dd, 8, 8)	4.50 (dd, 8, 8)	4.43 (dd, 8, 8)
	-5	$4.08{ }^{\text {a }}$	4.06 (m)	$4.06{ }^{\text {a }}$	$4.03{ }^{\text {a }}$	$4.07{ }^{\text {a }}$
	-6	$3.86{ }^{\text {a }}$	$3.85{ }^{\text {a }}$			
		$3.86{ }^{\text {a }}$	$3.87{ }^{\text {a }}$			
	Rha-1	5.46 (d, 2) ${ }^{\mathrm{H}, \S}$		5.42 (d, 2) ${ }^{1, \$}$		5.42 (d, 2) ${ }^{1,5}$
	-2	4.09 (dd, 3, 2)		4.07 (dd, 3, 2)		4.07 (dd, 3.5, 2)
	-3	$3.91{ }^{\text {a }}$		3.90 (dd, 9, 3)		3.90 (dd, 9, 3.5)
	-4	3.48 (dd, 9, 9)		3.48 (dd, 9, 9)		3.48 (dd, 9, 9)
	-5	3.76 (m)		3.79 (m)		3.78 (m)
	-6	1.24 (d, 6.5)		1.27 (d, 6)		1.26 (d, 6)
ester moiety (at C-6 of Glcl) (at C-6 or Glc3) (at C-4 of Glc1)	Ac	2.07 (s) ${ }^{1}$	2.04 (s) ${ }^{1}$	2.04 (s)		2.04 (s)
	Ac					
	β	6.44 (d, 16)	6.18 (d, 15.5)	$6.28(\mathrm{~d}, 16)^{\mathrm{K}}$	6.21 (d, 16) ${ }^{\text {H }}$	6.28 (d, 16) ${ }^{\text {K }}$
	γ	7.16 (d, 16) ${ }^{\text {K }}$	7.50 (d, 15.5) ${ }^{\mathrm{K}}$	7.50 (d, 16) ${ }^{\text {L }}$	7.49 (d, 16) ${ }^{\text {l }}$	$7.50(d, 16)^{L}$
	2	7.30 (d, 1) ${ }^{\text {L, } \dagger}$	7.31 (d, 8) ${ }^{\text {L }}$	7.04 (d, 2) ${ }^{\text {M, } \dagger}$	7.00 (d, 2)	7.04 (d, 2) ${ }^{\text {M, } \dagger}$
	3		6.71 (d, 8) ${ }^{\text {M }}$			
	5	7.19a,M,§	6.71 (d, 8)	7.03 (d, 8) ${ }^{\text {N,§ }}$	6.69 (d, 8) ${ }^{\text {K,§ }}$	7.03 (d, 8) ${ }^{\text {N,§ }}$
	6	7.19a,N	7.31 (d, 8)	6.97 (dd, 8, 2) ${ }^{\circ}$	6.90 (dd, 8, 2) ${ }^{\text {L }}$	6.97 (dd, 8, 2) ${ }^{\circ}$
	OMe	3.92 (s) ${ }^{0, t}$		3.76 (s) P, +	$3.81(\mathrm{~s})^{\mathrm{M}, \S}$	3.76 (s) ${ }^{\text {P, } \dagger}$
(at C-6 of Glc3)	β		$5.98(\mathrm{~d}, 15.5)^{\mathrm{N}}$	5.89 (d, 16) ${ }^{\text {Q }}$	5.92 (d, 16) ${ }^{\text {N }}$	5.89 (d, 16) ${ }^{\text {Q }}$
	γ		$7.35(\mathrm{~d}, 15.5)^{\mathrm{O}}$	7.26 (d, 16) ${ }^{\mathrm{R}}$	7.27 (d, 16) ${ }^{\text {O}}$	7.26 (d, 16) ${ }^{\text {R }}$
	2		7.24 (d, 8) ${ }^{\text {P }}$	7.20 (d, 8) ${ }^{\text {s }}$	7.20 (d, 8) ${ }^{\text {P }}$	7.21 (d, 8) ${ }^{\text {s }}$
	3		6.77 (d, 8) ${ }^{\text {Q }}$	6.76 (d, 8) ${ }^{\text { }}$	6.76 (d, 8) ${ }^{\text {Q }}$	6.76 (d, 8)
	5		6.77 (d, 8)	6.76 (d, 8)	6.76 (d, 8)	6.76 (d, 8)
	6		7.24 (d, 8)	7.20 (d, 8)	7.20 (d, 8)	7.21 (d, 8)
OMe (at C-1 of Fru)						
	β	6.41 (d, 16) ${ }^{\text {P }}$	$6.36(\mathrm{~d}, 15.5)^{\mathrm{R}}$	6.36 (d, 16) ${ }^{\text {U }}$	$6.36(\mathrm{~d}, 16)^{\mathrm{R}}$	6.41 (d, 16) ${ }^{\text {U }}$
	γ	7.68 (d, 16) ${ }^{\text {Q }}$	7.68 (d, 15.5) ${ }^{\mathrm{S}}$	7.78 (d, 16) ${ }^{\text {V }}$	$7.68(\mathrm{~d}, 16)^{\text {S }}$	7.68 (d, 16) ${ }^{\text {V }}$
	2	7.20 (d, 2) ${ }^{\text {R, } \ddagger}$	7.42 (d, 8) ${ }^{\top}$	7.42 (d, 8) ${ }^{W}$	7.42 (d, 8) ${ }^{\top}$	7.20 (d, 2) ${ }^{\text {W, }}$
	3		6.81 (d, 8) ${ }^{\text {U }}$	6.81 (d, 8) ${ }^{\text {x }}$	6.81 (d, 8) ${ }^{\text {U }}$	
	5	6.81 (d, 8) ${ }^{\text {S }}$	6.81 (d, 8)	6.81 (d, 8)	6.81 (d, 8)	6.82 (d, 8) ${ }^{\text {x }}$
	6	7.04 (dd, 8, 2) ${ }^{\top}$	7.42 (d, 8)	7.42 (d, 8)	7.42 (d, 8)	7.02 (dd, 8, 2) ${ }^{\text {Y }}$
	OMe	3.90 (s) ${ }^{\text {U, } \ddagger}$				3.91 (s) ${ }^{\text {Z, }}$
(at C-3 of Fru)	2, 6	8.16 (dd, 8, 2) ${ }^{\text {V }}$	8.17 (dd, 7.5, 1) ${ }^{\text {v }}$	8.18 (dd, 7.5, 1) ${ }^{Y}$	8.20 (dd, 8, 1) ${ }^{\text {v }}$	8.18 (dd, 7.5, 1) ${ }^{\alpha}$
	3, 5	$7.58{ }^{\text {a }}$ W	7.57 (t, 7.5) ${ }^{\text {W }}$	7.60 (t, 7.5) ${ }^{\text {z }}$	7.60 (t, 8) ${ }^{\text {w }}$	7.60 (t, 7.5) ${ }^{\beta}$
	4	$7.60{ }^{\text {a }}$	7.68 (tt, 7.5, 1)	7.71 (tt, 7.5, 1)	7.70 (tt, 8, 1)	7.71 (tt, 7.5, 1) ${ }^{\gamma}$

[^2]Dalmaisioses $\mathrm{H}-\mathrm{K}(\mathbf{1 3}-\mathbf{1 6})$ are tetrasaccharides having the same sugar sequence as that of reiniose $G(6)$ and with a p-coumaroyl residue at C-6 of Glc3. Dalmaisioses L-P (17-21) are also tetrasaccharides, but these have a feruloyl residue at C-6 of Glc3. In these compounds, the positions of each residue were confirmed by the same method as for previously mentioned compounds.

Tetrasaccharide multiesters having a sugar sequence of β-d-fructofuranosyl-(2 $\rightarrow 1$)-[β-D-glucopyranosyl-(1 $\rightarrow 2$)]-[β -

D-glucopyranosyl-(1 $\rightarrow 3$)]- α-D-glucopyranoside are most widely distributed in Polygala species. The sugar sequence of β-D-glucopyranosyl-(1 $\rightarrow 4$)- β-D-fructofuranosyl-($2 \rightarrow 1$)- α-D-glucopyranoside in dalmaisiose A (5) is the first example in Polygala species.

Experimental Section

General Experimental Procedures. Optical rotations were measured on a J ASCO DIP-1000 digital polarimeter at

Table 4. ${ }^{1} \mathrm{H}$ NMR Data of Compounds $\mathbf{1 7 - 2 1}$ in $\mathrm{CD}_{3} \mathrm{OD}$ at $35^{\circ} \mathrm{C}^{\mathrm{b}}$

		17	18	19	20	21
sugar moiety						
	Glc1-1	$5.82(\mathrm{~d}, 3)^{\text {A }}$	5.84 (d, 3.5) ${ }^{\text {A }}$	5.85 (d, 3) ${ }^{\text {A }}$	$5.85(\mathrm{~d}, 3.5)^{\text {A }}$	5.83 (d, 3.5) ${ }^{\text {A }}$
	-2	3.793,\#	3.82 (dd, 10, 3.5)\#	3.82 (dd, 9, 3) \#	3.82 (dd, 10, 3.5)\#	3.79 (dd, 9, 3.5)\#
	-3	3.98 (dd, 9, 9)*	3.98 (dd, 10, 10)*	3.97 (dd, 9, 9)*	3.97 (dd, 10, 10)*	3.98 (dd, 9, 9)*
	-4	5.02 (dd, 10.5, 9) ${ }^{\text {B }}$	5.02 (dd, 10, 8.5) ${ }^{\text {B }}$	5.03 (dd, 10.5, 9) ${ }^{\text {B }}$	5.03 (dd, 10, 9) ${ }^{\text {B }}$	5.04 (dd, 9, 9) ${ }^{\text {B }}$
	-5	$4.23{ }^{\text {a }}$	4.38 (m)	4.38 (m)	4.38 (m)	4.22 (m)
	-6	3.54 (dd, 12.5, 5)	$4.13{ }^{\text {a,c }}$	$4.14^{\text {a,C }}$	$4.14{ }^{\text {a }, ~} \mathrm{C}$	3.54 (dd, 12.5, 5.5)
		3.66 (dd, 12.5, 2.5)	$4.13{ }^{\text {a }}$	$4.14{ }^{\text {a }}$	$4.14{ }^{\text {a }}$	3.67 (dd, 12.5, 3.5)
	Glc2-1	4.62 (d, 7.5) ${ }^{\text {c, \# }}$	4.62 (d, 8) ${ }^{\text {D, \# }}$	4.63 (d, 7.5) ${ }^{\text {D, }}$ \#	4.63 (d, 7.5) ${ }^{\text {D.\# }}$	4.63 (d, 7.5) ${ }^{\text {c.\# }}$
	-2	$3.33{ }^{\text {a }}$	$3.32{ }^{\text {a }}$	3.35 (dd, 7.5, 7.5)	$3.37{ }^{\text {a }}$	$3.33{ }^{\text {a }}$
	-3	$3.33^{\text {a }}$	$3.32{ }^{\text {a }}$	$3.33{ }^{\text {a }}$	$3.34{ }^{\text {a }}$	$3.33{ }^{\text {a }}$
	-4	$3.33^{\text {a }}$	$3.32{ }^{\text {a }}$	$3.33{ }^{\text {a }}$	$3.34{ }^{\text {a }}$	$3.33{ }^{\text {a }}$
	-5	$3.33^{\text {a }}$	$3.32{ }^{\text {a }}$	$3.33{ }^{\text {a }}$	$3.34{ }^{\text {a }}$	$3.33{ }^{\text {a }}$
	-6	3.73 (dd, 12, 6)	3.72 (br d, 12.5)	$3.72{ }^{\text {a }}$	$3.73{ }^{\text {a }}$	$3.73{ }^{\text {a }}$
		3.93 (dd, 12, 2)	3.93 (br d, 12.5)	3.94 (dd, 11, 2.5)	3.94 (dd, 11, 2.5)	$3.94{ }^{\text {a }}$
	Glc3-1	4.51 (d, 7.5) ${ }^{\text {D,* }}$	4.53 (d, 8) ${ }^{\text {E,* }}$	4.53 (d, 7.5) ${ }^{\text {E,**}}$	4.53 (d, 7.5) ${ }^{\text {E,**}}$	4.51 (d, 7.5) ${ }^{\text {D,* }}$
	-2	3.06 (dd, 9, 7.5)	3.06 (dd, 9, 8)	3.06 (dd, 9, 7.5)	3.07 (dd, 9, 7.5)	3.06 (dd, 9, 7.5)
	-3	3.20 (dd, 9, 9)	3.21 (dd, 9, 9)	3.22 (dd, 9, 9)	3.22 (dd, 9, 9)	3.20 (dd, 9, 9)
	-4	3.35 (dd, 9, 9)	3.35 (dd, 9, 9)	3.36 (dd, 9, 9)	3.35 (dd, 9, 9)	3.35 (dd, 9, 9)
	-5	3.10 (m)	3.12 (m)	3.13 (m)	3.14 (m)	3.11 (m)
	-6	4.07 (dd, 12, 3)	$4.08{ }^{\text {a }}$	4.03 (dd, 12, 2) ${ }^{\text {F }}$	4.03 (dd, 12, 2)	$3.84{ }^{\text {a }}$
		4.20 (dd, 12, 3)	4.21 (dd, 12, 3.5) ${ }^{\text {F }}$	4.25 (dd, 12, 3.5)	4.25 (dd, 12, 3) ${ }^{\text {F }}$	$4.03{ }^{\text {a, }}$
	Fru-1	4.23 (d, 12) ${ }^{\text {F }}$	4.21 (d, 12) ${ }^{\text {G }}$	$4.22(\mathrm{~d}, 12)^{\mathrm{G}}$	4.22 (d, 12) ${ }^{\text {G }}$	4.32 (d, 12) ${ }^{\text {F }}$
		4.79 (d, 12) ${ }^{\text {F }}$	$4.72(\mathrm{~d}, 12)^{\mathrm{G}}$	$4.71(\mathrm{~d}, 12)^{\mathrm{G}}$	4.72 (d, 12) ${ }^{\text {G }}$	4.73 (d, 12) ${ }^{\text {F }}$
	-3	5.72 (d, 8) ${ }^{\text {G }}$	5.73 (d, 8) ${ }^{\text {H }}$	5.73 (d, 8) ${ }^{\text {H }}$	$5.74(\mathrm{~d}, 8)^{\mathrm{H}}$	5.72 (d, 8) ${ }^{\text {G }}$
	-4	4.50 (dd, 8, 8)	4.42 (dd, 8, 8)	4.43 (dd, 8, 8)	4.44 (dd, 8, 8)	4.51 (dd, 8, 8)
	-5	4.03 (m)	$4.07{ }^{\text {a }}$	$4.08{ }^{\text {a }}$	4.09 (m)	$4.04{ }^{\text {a }}$
	-6	$3.85{ }^{\text {a }}$	$3.85{ }^{\text {a }}$	$3.86{ }^{\text {a }}$	$3.85{ }^{\text {a }}$	$3.86{ }^{\text {a }}$
		$3.85{ }^{\text {a }}$	$3.85{ }^{\text {a }}$	$3.86{ }^{\text {a }}$	$3.85{ }^{\text {a }}$	$3.86{ }^{\text {a }}$
	Rha-1			5.42 (d, 2) ${ }^{1,5}$	5.42 (d, 2) ${ }^{1, \$}$	5.42 (d, 2) ${ }^{\mathrm{H}, \text { § }}$
	-2			4.07 (dd, 3, 2)	4.06 (dd, 3.5, 2)	4.06 (dd, 3, 2)
	-3			3.89 (dd, 9, 3)	3.89 (dd, 9, 3.5)	$3.91^{\text {a }}$
	-4			3.48 (dd, 9, 9)	3.48 (dd, 9, 9)	3.47 (dd, 9, 9)
	-5			3.77 (m)	3.77 (m)	$3.76{ }^{\text {a }}$
	-6			1.25 (d, 6)	1.26 (d, 6)	1.25 (d, 6)
ester moiety (at C-6 of Glc1) (at C-6 of Glc3) (at C-4 of Glc1)	Ac		2.04 (s) ${ }^{1}$	2.04 (s)	2.05 (s)	
	Ac					
	β	$6.20(\mathrm{~d}, 16)^{\mathrm{H}}$	6.19 (d, 16)	6.28 (d, 16) ${ }^{\text {K }}$	6.28 (d, 16) ${ }^{\text {K }}$	6.28 (d, 16) ${ }^{\prime}$
			7.48 (d, 16) ${ }^{\mathrm{K}}$	7.50 (d, 16) ${ }^{\text {L }}$	7.50 (d, 16) ${ }^{\text {L }}$	7.50 (d, 16) ${ }^{\text {J }}$
	2 3	$6.97(d, 2)^{\text {r }}$,	6.98 (d, 2) ${ }^{\text {L, }}$	$7.01(\mathrm{~d}, 2)^{\mathrm{M}, \text { t }}$	$7.01(\mathrm{~d}, 2)^{\mathrm{M}, t}$	7.00 (d, 2) ${ }^{\text {K,t }}$
	5	6.67 (d, 8) ${ }^{\text {K }}$	$6.68(\mathrm{~d}, \mathrm{8})^{\mathrm{M}}$	7.03 (d, 8) ${ }^{\text {N,§ }}$	7.03 (d, 8) ${ }^{\text {N,5 }}$	7.03 (d, 8) ${ }^{\text {L,5 }}$
	6	6.84 (dd, 8, 2) ${ }^{\text {L }}$	6.89 (dd, 8, 2) ${ }^{\text {N }}$	6.97 (dd, 8, 2) ${ }^{0}$	6.97 (dd, 8, 2) ${ }^{0}$	6.97 (dd, 8, 2) ${ }^{\text {M }}$
	OMe	3.88 (s) M, ¢	3.80 (s) ${ }^{\text {0, }}$	3.72 (s) ${ }^{\text {P, }}$ t	3.73 (s) ${ }^{\text {P, }}$ t	3.72 (s)
(at C-6 of Glc)	β	5.95 (d, 16) ${ }^{\text {N }}$	5.96 (d, 16) ${ }^{\text {P }}$	5.93 (d, 16) ${ }^{\text {Q }}$	5.94 (d, 16) ${ }^{\text {Q }}$	5.93 (d, 16) ${ }^{\text {o }}$
		7.23 (d, 16) ${ }^{\text {O }}$	$7.24(\mathrm{~d}, 16)^{\mathrm{Q}}$	7.23 (d, 16) ${ }^{\text {R }}$	7.23 (d, 16) ${ }^{\text {R }}$	7.23 (d, 16) ${ }^{\text {P }}$
	2 3	6.90 (d, 2) ${ }^{\text {P,t }}$	6.90 (d, 2) ${ }^{\text {R,t }}$	6.92 (d, 2) ${ }^{\text {s, }}$	$6.92(\mathrm{~d}, 2)^{\text {s, }}$	6.92 (d, 2) ${ }^{\text {Q, }}$
	5	6.77 (d, 8) ${ }^{\text {Q }}$	6.76 (d, 8) ${ }^{\text {s }}$	$6.78(\mathrm{~d}, 8)^{\top}$	$6.78(\mathrm{~d}, 8)^{\top}$	$6.78(\mathrm{~d}, 8)^{\mathrm{R}}$
	6	6.88 (dd, 8, 2) ${ }^{\text {R }}$	6.84 (dd, 8, 2) ${ }^{\top}$	6.85 (dd, 8, 2) ${ }^{\text {u }}$	6.85 (dd, 8, 2) ${ }^{\text {u }}$	6.86 (dd, 8, 2) ${ }^{\text {s }}$
	OMe	3.80 (s) ${ }^{\text {s,t }}$	3.87 (s) ${ }^{\text {U,t }}$	3.87 (s) $\mathrm{v}_{\text {, }}$	3.87 (s) v , \ddagger	3.88 ($)^{\text {T, }}$,
(at C-1 of Fru)	β	6.36 (d, 16) ${ }^{\text {T}}$	6.35 (d, 16) ${ }^{\text {v }}$	6.36 (d, 16) ${ }^{\text {w }}$	6.41 (d, 16) ${ }^{\text {w }}$	6.41 (d, 16) ${ }^{\text {U }}$
	γ	7.68 (d, 16) ${ }^{\text {U }}$	7.68 (d, 16) ${ }^{\text {w }}$	$7.68(\mathrm{~d}, 16)^{\mathrm{x}}$	$7.69(\mathrm{~d}, 16)^{\mathrm{x}}$	7.69 (d, 16) ${ }^{\text {v }}$
	2	7.42 (d, 8) ${ }^{\text {v }}$	7.42 (d, 8) ${ }^{\text {x }}$	7.42 (d, 8) ${ }^{\text {r }}$	7.20 (d, 2) ${ }^{\text {r, }}$	7.21 (d, 2) ${ }^{\text {W, }}$
	3	6.81 (d, 8) ${ }^{\text {w }}$	$6.81(\mathrm{~d}, 8)^{Y}$	6.81 (d, 8) ${ }^{\text {z }}$		
		6.81 (d, 8)	6.81 (d, 8)	6.81 (d, 8)	$6.82(\mathrm{~d}, 8)^{\text {z }}$	$6.82(\mathrm{~d}, 8)^{\mathrm{x}}$
	6	7.42 (d, 8)	7.42 (d, 8)	7.42 (d, 8)	7.01 (dd, 8, 2) ${ }^{\alpha}$	7.03 (dd, 8, 2) ${ }^{\text {r }}$
	OMe				3.91 ($\mathrm{s}^{\beta, 1]}$	3.91 (s) ${ }^{\text {z,9 }}$
(at C-3 of Fru)	2, 6	8.20 (dd, 8, 1) ${ }^{\mathrm{x}}$	8.18 (dd, 7.5, 1) ${ }^{\text {z }}$	8.18 (dd, 7.5, 1) ${ }^{\alpha}$	8.18 (dd, 7.5, 1) ${ }^{r}$	8.20 (dd, 8, 1) ${ }^{\alpha}$
	3, 5	7.61 (t, 8) ${ }^{\text {r }}$	7.60 (t, 7.5) ${ }^{\alpha}$	7.60 (t, 7.5) ${ }^{\beta}$	7.60 (t, 7.5) ${ }^{\text {d }}$	7.60 (t, 8) ${ }^{\beta}$
	4	7.71 (tt, 8, 1)	7.71 (tt, 7.5, 1)	7.71 (tt, 7.5, 1)	7.71 (tt, 7.5, 1)	7.71 (tt, 8, 1)

a Overlapped with other signals ROEs were observed between protons that have the same letter ($\#, *, \S, \uparrow, \pm, \uparrow$) in each column. Long-range correlations were observed between protons and carbons that have the same letter ($\mathrm{A}, \mathrm{B}, \ldots, \gamma, \delta$) in the same compounds in Table 5. ${ }^{\text {b }}$ Assigned with the aid of HOHAHA difference, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, HMQC, and HMBC spectra.
$23^{\circ} \mathrm{C}$. UV spectra were recorded on a Hitachi U-3410 spectrophotometer. ${ }^{1} \mathrm{H}(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(100 \mathrm{MHz})$ NMR spectra were recorded on a J EOL $\alpha-400$ FT-NMR spectrometer with TMS as an internal standard. Inverse-detected heteronuclear correlations were measured using HMQC (optimized for ${ }^{1 \mathrm{~J}} \mathrm{c}-\mathrm{H}$ $=145 \mathrm{~Hz}$) and HMBC (optimized for ${ }^{\mathrm{n}} \mathrm{c}-\mathrm{H}=8 \mathrm{~Hz}$) pulse sequences with a pulse-field gradient. Positive-mode FABMS were recorded on a J EOL J MS-SX102 spectrometer, using a m-nitrobenzyl alcohol as matrix. GC was carried out with a

HEWLETT PACKARD 5890 gas chromatograph. HPLC was performed using a J ASCO System 800.

Plant Material. The seedling of Polygala dalmaisiana (P. oppositifolia \times P. myrtifolia) was purchased from Sakata Seed (Yokohama, J apan) in April 1998 and grown in the botanical garden of the University of Shizuoka. The roots of P. dalmaisiana were harvested in November 2000.
Extraction and Isolation. The plant material (fresh roots, 1.7 kg) was extracted twice with hot MeOH . After evaporation

		7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
sugar moiety																
	Glc1-1	93.0	93.0	93.0	92.9	93.0	92.9	93.1	93.1	93.3	93.1	93.3	93.0	93.0	93.1	93.3
	2	$81.4{ }^{\text {D }}$	$81.4{ }^{\text {D }}$	$81.0{ }^{\text {D }}$	$81.1{ }^{\text {D }}$	$81.1{ }^{\text {D }}$	$81.1{ }^{\text {D }}$	$81.3{ }^{\text {D }}$	$81.3{ }^{\text {D }}$	81.5 C	$81.3{ }^{\text {D }}$	$81.5{ }^{\text {C }}$	$81.4{ }^{\text {D }}$	$81.4{ }^{\text {D }}$	$81.4{ }^{\text {D }}$	81.5 C
	3	$79.1{ }^{\text {E }}$	$79.0{ }^{\text {E }}$	$79.5{ }^{\text {E }}$	$79.3{ }^{\text {E }}$	$79.1{ }^{\text {E }}$	$79.4{ }^{\text {D }}$	$79.1{ }^{\text {E }}$	$79.3{ }^{\text {D }}$	$79.0{ }^{\text {E }}$	$79.1{ }^{\text {E }}$	$79.1{ }^{\text {E }}$	$79.4{ }^{\text {D }}$			
	4	70.6	70.5	71.1	71.0	70.9	71.0	70.5	70.5	70.2	70.5	70.3	70.4	70.5	70.5	70.3
	5	69.7	69.7	69.6	69.6	69.6	69.6	69.7	69.7	72.4	69.7	72.4	69.7	69.7	69.7	72.3
	6	64.4	64.3	64.4	63.8	64.3	64.4	64.4	64.3	62.1	64.3	62.1	64.3	64.3	64.3	62.1
	GIc2-1	105.4	105.4	105.5	105.5	105.5	105.4	105.4	105.4	105.4	105.4	105.5	105.4	105.4	105.4	105.3
	2	75.3	75.3	75.3	75.3	75.3	75.3	75.3	75.3	75.3	75.3	75.3	75.3	75.3	75.3	75.3
	3	78.6	78.5	78.5	78.5	78.5	78.5	78.6	78.6	78.5	78.6	78.5	78.6	78.6	78.6	78.5
	4	71.7	71.7	71.8	71.7	71.8	71.7	71.7	71.7	71.7	71.7	71.7	71.7	71.7	71.7	71.7
	5	78.6	78.5	78.5	78.5	78.5	78.5	78.6	78.6	78.5	78.6	78.5	78.6	78.6	78.6	78.5
	6	63.1	63.1	63.1	63.0	63.1	63.1	63.1	63.1	63.1	63.1	63.1	62.9	63.1	63.1	63.2
	Glc3-1	104.5	104.4	104.7	104.6	104.7	104.6	104.6	104.5	104.5	104.5	104.5	104.5	104.5	104.5	104.5
	2	75.6	75.5	75.7	75.7	75.7	75.6	75.6	75.5	75.5	75.5	75.5	75.6	75.5	75.5	75.5
	3	77.9	78.0	77.9	78.0	77.9	77.9	78.0	78.1	78.0	78.1	78.1	78.1	78.1	78.1	78.1
	4	71.1	71.0	71.7	71.9	72.0	71.7	71.1	71.1	70.9	71.1	70.9	70.9	71.1	70.8	71.0
	5	74.8	74.8	77.2	77.3	77.2	77.3	75.0	74.9	74.9	74.9	74.9	74.9	74.9	74.9	74.9
	6	64.4	64.3	62.9	63.1	62.9	63.0	64.2	64.0	64.0	64.0	64.0	63.8	64.0	64.0	64.0
	Fru-1	66.0	65.9	65.8	65.7	65.8	65.8	65.9	65.9	65.9	65.9	66.0	66.0	66.0	65.9	66.0
	2	$104.0{ }^{\text {A,B }}$	$104.0{ }^{\text {A , }}$ G	104.0 ${ }^{\text {A , F }}$	104.0 ${ }^{\text {A,F }}$	104.1 ${ }^{\text {A,F }}$	104.0 ${ }^{\text {A , }}$ F	$104.0{ }^{\text {A,G }}$	$104.0{ }^{\text {A }, 6}$	103.94,F	104.0 $0^{\text {A,G }}$	103.94,F	104.0 ${ }^{\text {A,G }}$	$104.0{ }^{\text {A,G }}$	$104.0{ }^{\text {A,G }}$	103.9 4,F
	3	80.2	80.1	80.0	80.0	80.0	80.0	80.2	80.2	80.2	80.2	80.3	80.2	80.2	80.2	80.2
	4	74.0	74.0	74.0	74.0	74.0	74.0	74.1	74.1	73.7	74.1	73.7	74.1	74.1	74.1	73.8
	5	84.7	84.7	84.7	84.7	84.7	84.7	84.8	84.8	84.6	84.8	84.7	84.8	84.8	84.8	84.6
	6	63.8	63.8	63.8	63.8	63.8	63.8	63.9	63.9	63.2	63.9	63.2	63.1	63.8	63.8	63.2
	Rha-1	99.7	100.9	99.8	101.1	99.8	100.9		101.1		101.1			101.0	101.1	101.0
	2	71.9	72.0	72.0	72.0	71.7	72.0		72.0		72.0			72.0	72.0	72.0
	3	72.3	72.2	72.3	72.2	72.3	72.2		72.3		72.3			72.2	72.3	72.2
	4	73.8	73.8	73.8	73.8	73.8	73.8		73.9		73.9			73.8	73.8	73.8
	5	70.9	71.0	70.9	71.0	71.1	71.0		70.9		70.9			70.8	71.1	71.0
	6	18.0	18.0	18.1	18.0	18.1	18.0		18.0		18.1			18.0	18.0	18.0
ester moiety (at C-6 of Glc1)																
	Ac	20.5	20.8	172.5 20.8	20.8	20.8	20.8	$\begin{gathered} 172.5 \\ 20.7 \end{gathered}$	20.7		20.7		$\begin{array}{r} 172.5 \\ 20.7 \end{array}$	$\begin{gathered} 1 / 2.5 \\ 20.7 \end{gathered}$	$\begin{gathered} 1 / 2.5,1 \\ 20.7 \end{gathered}$	
(at C-6 of Glc3)	Ac	$172.6^{\text {F,K }}$	172.5 ${ }^{\text {F,K }}$													
		20.8	20.5													
(at C-4 of Glc1)	α	$167.6^{\text {B,M }}$	$167.6^{\text {B, M }}$	$167.8^{\text {B,K }}$	$167.7^{\text {B, K }}$	$167.8^{\text {B,K }}$	$167.7{ }^{\text {B,K }}$	$168.1^{\text {B,K }}$	$167.7{ }^{\text {B,L }}$	$168.2^{8,1}$	$167.7{ }^{\text {B,L }}$	$168.2^{8,1}$	$168.1^{\text {B,K }}$	$167.7{ }^{\text {B,L }}$	$167.7{ }^{\text {B,L }}$	$167.8^{8,1}$
	β	116.9	117.2	117.1	117.6	117.1	115.2	114.9	116.9	115.1	116.9	115.1	114.9	116.9	116.9	117.1
	γ	146.1^{N}	$146.4^{\mathrm{N}, \mathrm{P}}$	$146.3{ }^{\text {L }}$	146.5L.N	146.3 ${ }^{\text {L }}$	146.5 ${ }^{\text {L }} \mathrm{N}$	147.0	$146.5^{\text {m,o }}$	$147.0{ }^{\text {, }}$ L	$146.2^{\mathrm{m}, \mathrm{o}}$	147.0	147.3L, ${ }^{\text {N }}$	$146.5^{\mathrm{M}, \mathrm{O}}$	$146.5^{\text {m,o }}$	146.4 ${ }^{\text {K,M }}$
	1	129.7.0	131.0 ${ }^{\text {L,O }}$	129.8 , M	130.9 , M	129.8 , M	130.9 / M	$127.0{ }^{\text {, M }}$	$130.7{ }^{\text {K,N }}$	127.5 ${ }^{\text {H.K }}$	$130.7{ }^{\mathrm{K}, \mathrm{N}}$	127.5 ${ }^{\text {H.K }}$	127.4 , M	$130.7{ }^{\text {K,N }}$	$130.7{ }^{\mathrm{K}, \mathrm{N}}$	130.71 , L
	2	131.1	112.6	131.3	112.8	131.1	112.8	131.2	112.8	111.6	112.8	111.7	111.7	112.9	112.9	112.8
	3	118.0	$152.2^{\text {O,Q }}$	117.9	152.1 $1^{\text {M,O }}$	117.9	$152.1{ }^{\text {m,o }}$	116.9	$152.0^{\text {N,P }}$	149.2 ${ }^{\text {K,M }}$	$152.1{ }^{1, p}$	149.2 ${ }^{\text {K,M }}$	149.2 ${ }^{\text {m,o }}$	$152.0^{\text {N,P }}$	$152.0{ }^{\text {N, }, ~}$	152.0 ${ }^{\text {L N }}$
	4	$159.8{ }^{1 / \mathrm{N}}$	$150.8{ }^{1, N, P}$	$159.8{ }^{\text {H,L }}$	149.3 ${ }^{\text {H,L }}$	$159.8{ }^{\text {H,L }}$	$159.8{ }^{\text {H,L,N }}$	$161.3{ }^{\text {L }}$	149.2 ${ }^{1 / \mathrm{M}, \mathrm{O}}$	$150.7{ }^{\text {J , }}$	149.21,M,0	150.7] ,	$150.7{ }^{\text {L,N }}$	149.1 ${ }^{\text {,M, }}$ O	149.1 ${ }^{1, \mathrm{M}, \mathrm{O}}$	149.0 ${ }^{\text {H, K, M }}$
	5	118.0	118.9	117.9	118.8	117.9	118.8	116.9	119.2	116.5	119.2	116.5	116.5	119.2	119.2	119.2
	6	131.1	123.6	131.3	123.4	131.1	123.4	131.2	123.2	124.3	123.2	124.2	124.3	123.1	123.1	123.0
	OMe		56.6		56.7		56.6		56.3	56.2	56.3	56.2	56.2	56.2	56.3	56.2
(at C-6 of Glc3)	α							$169.0{ }^{\text {F,O }}$	$168.88^{\text {F,R }}$	$168.9{ }^{\text {E, O }}$	$168.88^{\text {F,R }}$	$168.9{ }^{\circ}$	$168.9{ }^{\text {F,Q }}$	$168.8{ }^{\text {F,R }}$	$168.8{ }^{\text {F,R }}$	$168.7{ }^{\text {E,P }}$
	β							114.8	114.8	114.8	115.2	115.1	115.0	115.1	115.1	115.2
	γ							$146.5^{\text {P }}$	$146.2^{\text {s }}$	$146.3^{\text {p }}$	146.5^{5}	$146.5^{\text {P }}$	$146.5^{\text {R,T }}$	$146.4{ }^{\text {s,u }}$	$146.4{ }^{\text {S,U }}$	146.30.5
	1							$127.1^{\text {N,Q }}$	$127.1{ }^{\text {Q,T }}$	$127.1^{\mathrm{N}, \mathrm{Q}}$	$127.1^{\text {Q,T }}$	$127.7^{\mathrm{N}, \mathrm{Q}}$	$127.7{ }^{\text {P , }}$	127.78.T	127.7Q,T	127.70,R
	2							131.2	131.1	131.1	131.1	111.7	111.7	111.8	111.8	111.8
	3							116.7	116.9	116.7	116.8	149.2 ${ }^{\text {Q S }}$	$149.22^{\text {s,u }}$	149.2 ${ }^{\text {T,V }}$	149.3 ${ }^{\text {T,V }}$	$149.2^{R, T}$
	4							$161.2^{\text {p }}$	$161.1^{\text {s }}$	$161.1^{\text {P }}$	$161.1^{\text {s }}$	$150.5^{\text {P,R }}$	$150.5^{\text {R,T }}$	$150.5^{\text {s,u }}$	150.5s, ${ }^{\text {u }}$	150.5Q, 5
	5							116.7	116.9	116.7	116.8	116.4	116.4	116.5	116.5	116.5
	6							131.2	131.1	131.1	131.1	124.0	124.0	124.0	124.0	124.0
	OMe											56.5	56.5	56.6	56.6	56.6

Table 5 (Continued)

${ }^{\text {a }}$ Long-range correlations were observed between protons and carbons that have the same letter ($\mathrm{A}, \mathrm{B}, \ldots, \gamma, \delta$) in the same compounds in Tables $2-4$.
of MeOH under reduced pressure, the extract was suspended in $\mathrm{H}_{2} \mathrm{O}$ and extracted with diethyl ether. The $\mathrm{H}_{2} \mathrm{O}$ layer was passed through a Mitsubishi Diaion HP-20 column ($9 \mathrm{~cm} \times$ $36 \mathrm{~cm})$. The absorbed material was eluted with 50% aqueous $\mathrm{MeOH}, 70 \%$ aqueous MeOH , and MeOH , successively. The $70 \% \mathrm{MeOH}$ eluate (16 g) was submitted to column chromatography on silica gel (500 g) and eluted with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-$ $\mathrm{H}_{2} \mathrm{O}(72: 25: 3$) to afford 13 fractions (A-M). Fractions E + F (1215 mg) were chromatographed over ODS [$5 \mathrm{~cm} \times 50 \mathrm{~cm}$, $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}$ (15:85 to 23:77) linear gradient] to afford $\mathbf{1}$ (412 $\mathrm{mg}), \mathbf{3}(6.4 \mathrm{mg}), \mathbf{4}(106 \mathrm{mg}), 5(32 \mathrm{mg}), 6(14 \mathrm{mg})$, and fraction $\mathrm{N}(128 \mathrm{mg})$. Fraction $\mathrm{N}(128 \mathrm{mg})$ was chromatographed over Ph-A [2 cm $\times 25 \mathrm{~cm}, \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (60:40)] to give fraction N -a (19 mg) and $\mathrm{N}-\mathrm{b}(13 \mathrm{mg})$. Fraction N -a was chromatographed over Ph-A [$2 \mathrm{~cm} \times 25 \mathrm{~cm}, \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (52:48)] to afford 13 (26 mg), and fraction N-b was chromatographed over Ph-A [2 $\mathrm{cm} \times 25 \mathrm{~cm}, \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (60:40)] to afford 18 (6.9 mg). Fractions G + H (1074 mg) were chromatographed over ODS [$5 \mathrm{~cm} \times 50 \mathrm{~cm}, \mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}$ (15:85 to 31:69) linear gradient] to afford 19 fractions (a-s). Fractions j (187 mg), n (316 mg), and p (22 mg) were chromatographed over Ph-A [2 cm $\times 25$ $\mathrm{cm}, \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(50: 50)$] to afford $\mathbf{8}(19 \mathrm{mg})$ from fraction j , $\mathbf{1 6}(79 \mathrm{mg})$ and $\mathbf{2 0}(\mathbf{1 8 4} \mathrm{mg})$ from fraction n , and $\mathbf{1 5}$ (3.3 mg) and $17(4.7 \mathrm{mg})$ from fraction p . Fraction $\mathrm{f}(17 \mathrm{mg})$ was chromatographed over Ph-A [$2 \mathrm{~cm} \times 25 \mathrm{~cm}, \mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}$ (45: 55)] to afford $2(5.4 \mathrm{mg})$. Fraction I (63 mg) was chromatographed over ODS [$2 \mathrm{~cm} \times 25 \mathrm{~cm}, \mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}$ (22.5:77.5)] to afford 19 (5.1 mg). Fraction I (2047 mg) was chromatographed over ODS [$5 \mathrm{~cm} \times 100 \mathrm{~cm}, \mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}$ (21:79)] to afford 10 fractions ($\mathrm{O}-\mathrm{X}$). Fraction $\mathrm{P}(248 \mathrm{mg})$ was chromatographed over Ph-A [$2 \mathrm{~cm} \times 25 \mathrm{~cm}, \mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}$ (22.5:77.5)] to afford $9(36 \mathrm{mg}), \mathbf{1 0}(24 \mathrm{mg})$, and $\mathbf{2 1}(15 \mathrm{mg})$. Fractions Q $(271 \mathrm{mg}), \mathrm{S}(229 \mathrm{mg})$, and $\mathrm{U}(244 \mathrm{mg})$ were chromatographed over Ph-A [$2 \mathrm{~cm} \times 25 \mathrm{~cm}, \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (50:50)] to afford $\mathbf{1 1}$ (51 mg) and $12(103 \mathrm{mg})$ from fractions Q, $7(50 \mathrm{mg})$ from fraction S, and $\mathbf{1 4}(94 \mathrm{mg}$) from fraction U. Fraction R (208 mg) was separated by HPLC [Ph-A, $2 \mathrm{~cm} \times 25 \mathrm{~cm}, \mathrm{CH}_{3} \mathrm{CN}-$ $\mathrm{H}_{2} \mathrm{O}(20: 80)$] to afford $12(18 \mathrm{mg})$. Fraction $\mathrm{V}(115 \mathrm{mg})$ was separated successively by Ph-A [$2 \mathrm{~cm} \times 25 \mathrm{~cm}, \mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}$ (22.5:77.5)] and Ph-A [$2 \mathrm{~cm} \times 25 \mathrm{~cm}, \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(50: 50)$] to afford 14 (6.6 mg).
Dalmaisione A (1): amorphous powder, $[\alpha]^{23}{ }_{\mathrm{D}}-62.0^{\circ}$ (c 1.0, pyridine); UV (MeOH) $\lambda_{\max }(\log \epsilon) 245$ (4.26), 266 (4.23), 305 (4.20); ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, see Table 1; FABMS m/z 589 [M $+\mathrm{H}]^{+}, 611[\mathrm{M}+\mathrm{Na}]^{+}$.
Dalmaisione B (2): amorphous powder, $[\alpha]^{23_{D}}-42.4^{\circ}$ (c 0.59 , pyridine); UV (MeOH) $\lambda_{\text {max }}(\log \epsilon) 240$ (4.33), 308 (4.25); ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, see Table 1; FABMS m/z $979[\mathrm{M}+\mathrm{Na}]^{+}$.
Dalmaisione C (3): amorphous powder, $[\alpha]^{23}{ }_{D}-110.2^{\circ}$ (C 0.64 , pyridine); UV (MeOH) $\lambda_{\text {max }}(\log \epsilon) 272$ (4.09), 314 (3.85); ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, see Table 1; FABMS m/z $589[\mathrm{M}+\mathrm{H}]^{+}, 611$ $[\mathrm{M}+\mathrm{Na}]^{+}$.
Dalmaisione D (4): amorphous powder, $[\alpha]^{23}{ }_{D}-19.7^{\circ}$ (c 1.0, pyridine); UV (MeOH) $\lambda_{\text {max }}(\log \epsilon) 235$ (3.97), 248 (4.01), 306 (4.04); ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }^{2}$) $\delta 8.06$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.5,1.5 \mathrm{~Hz}$, $\mathrm{H}-7), 7.92$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.5,1.5 \mathrm{~Hz}, \mathrm{H}-6^{\prime}$), $7.82(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=$ $7.5,1.5 \mathrm{~Hz}, \mathrm{H}-5), 7.73$ (1H, dd, J $=7.5,1.5 \mathrm{~Hz}, \mathrm{H}-4), 7.57$ (1 H , td, J = 7.5, $1.5 \mathrm{~Hz}, \mathrm{H}-4^{\prime}$), 7.50 ($1 \mathrm{H}, \mathrm{td}, \mathrm{J}=7.5,1.5 \mathrm{~Hz}, \mathrm{H}-6$), 7.49 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.5,1.5 \mathrm{~Hz}, \mathrm{H}^{\prime} 3^{\prime}$), $7.22(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=7.5,1.5$ $\mathrm{Hz}, \mathrm{H}-5^{\prime}$), 7.10 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-10$), 5.10 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{H}-1$ of Glc1), 4.24 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{H}-1$ of Glc2), 4.02 (1 H , br d, J $=11 \mathrm{~Hz}, \mathrm{H}-6$ of GIcl), $3.68(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9,7.5 \mathrm{~Hz}, \mathrm{H}-4$ of GIcl), $3.65(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.5,4 \mathrm{~Hz}, \mathrm{H}-6$ of GIc2), $3.63(1 \mathrm{H}, \mathrm{brd}$, J $=$ $11 \mathrm{~Hz}, \mathrm{H}-6$ of Glcl), 3.42 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.5,6 \mathrm{~Hz}, \mathrm{H}-6$ of Glc 2), 3.42 (overlapped, H-5 of Glc1), 3.34 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9,7 \mathrm{~Hz}, \mathrm{H}-2$ of Glcl), 3.20 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9,9 \mathrm{~Hz}, \mathrm{H}-3$ of GIc1), 3.12 ($1 \mathrm{H}, \mathrm{dd}$, $\mathrm{J}=8,8 \mathrm{~Hz}, \mathrm{H}-3$ of GIc2), $3.06(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8,8 \mathrm{~Hz}, \mathrm{H}-4$ of Glc2), 3.03 (overlapped, H-5 of Glc2), 2.99 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8,7.5$ $\mathrm{Hz}, \mathrm{H}-2$ of GIc2); ${ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }^{2}$) $\delta 177.1$ (C-3), 160.4 (C2), 155.9 (C-9), 155.3 (C-2'), 134.0 (C-5), 132.9 (C-4'), 128.9 (C6'), 125.2 (C-6), 124.6 (C-7), 123.1 (C-8), 121.9 (C-5'), 120.6 (C1^{\prime}), 118.4 (C-4), 116.0 (C-3'), 112.0 (C-10), 103.3 (C-1 of Glc2), 100.2 (C-1 of Glc1), 76.8 (C-3 of Glc2), 76.8 (C-5 of Glc2), 76.6 (C-4 of Glc1), 76.1 (C-5 of Glc1), 73.5 (C-2 of Glc2), 73.3 (C-2
of GIc1), 70.1 (C-4 of Glc2), 69.7 (C-3 of Glc1), 68.4 (C-6 of GIc1), 61.0 (C-6 of Glc2); FABMS m/z 563 [M + H] .

Dalmaisiose A (5): amorphous powder, $[\alpha]^{23}{ }_{D}-5.8^{\circ}$ (c 0.77 , $\mathrm{MeOH}) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\text {max }}(\log \epsilon) 224$ (4.43), 284 (4.46), 317 (4.29); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=16 \mathrm{~Hz}, \mathrm{H} \gamma$ of p-cou.), 7.55 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=16 \mathrm{~Hz}, \mathrm{H} \gamma$ of cin.), $7.52(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8$ $\mathrm{Hz}, \mathrm{H}-2,6$ of p-cou.), 7.34 (overlapped, $\mathrm{H}-2,3,4,5,6$ of cin.), $6.74(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{H}-3,5$ of $\mathrm{p}-\mathrm{cou}),. 6.41(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=16 \mathrm{~Hz}$, H_{β} of p-cou.), $6.07\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=16 \mathrm{~Hz}, \mathrm{H}_{\beta}\right.$ of cin.), $5.77(1 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=5 \mathrm{~Hz}, \mathrm{H}-3$ of Fru$), 5.42(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.5 \mathrm{~Hz}, \mathrm{H}-1$ of Glcl), $4.85(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10,10 \mathrm{~Hz}, \mathrm{H}-4$ of Glcl), $4.44(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5$, $5 \mathrm{~Hz}, \mathrm{H}-4$ of Fru), $4.43(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{H}-1$ of GIc2), 4.31 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$ of Glcl), 4.18 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$ of Fru), 4.14 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ $=12.5,3 \mathrm{~Hz}, \mathrm{H}-6$ of Glcl), $4.09(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.5,5 \mathrm{~Hz}, \mathrm{H}-6$ of GIc1), 3.81 (overlapped, H-6 of Fru), 3.78 (overlapped, H-6 of Glc2), $3.75(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10,10 \mathrm{~Hz}, \mathrm{H}-3$ of GIc1), 3.73 (overlapped, H-6 of Fru), 3.67 (2 H , br s, H-1 of Fru), 3.62 (1 H , dd, $\mathrm{J}=12.5,5 \mathrm{~Hz}, \mathrm{H}-6$ of GIc2), $3.52(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10,3.5 \mathrm{~Hz}$, $\mathrm{H}-2$ of Glc1), 3.31 (overlapped, H-3 of GIc2), 3.31 (overlapped, $\mathrm{H}-4$ of Glc2), 3.24 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$ of Glc2), 3.18 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9$, $7.5 \mathrm{~Hz}, \mathrm{H}-2$ of GIc2), 2.04 (3H, s, Ac); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta$ 172.7 (Ac), 167.8 (C_{α} of cin.), 167.5 (C_{α} of p-cou.), 161.6 (C-4 of p-cou.), 147.6 (C_{γ} of p-cou.), 147.1 (C_{γ} of cin.), 135.4 (C-1 of cin.), 131.6 (C-4 of cin.), 131.4 (C-2, 6 of p-cou.), 130.1 (C-3, 5 of cin.), 129.3 (C-2, 6 of cin.), 127.1 (C-1 of p-cou.), 118.0 (C_{β} of cin.), 117.1 (C-3, 5 of $p-c o u.), 114.7$ (C_{β} of $\left.p-c o u.\right), 107.2$ (C-2 of Fru), 104.5 (C-1 of Glc2), 93.5 (C-1 of GIc1), 85.0 (C-5 of Fru), 84.4 (C-4 of Fru), 78.6 (C-3 of Fru), 77.9 (C-4 of GIc2), 77.9 (C-5 of Glc2), 75.0 (C-2 of Glc2), 73.0 (C-2 of Glc1), 72.8 (C-4 of Glc1), 72.5 (C-3 of Glc1), 71.2 (C-3 of Glc2), 70.0 (C-5 of GIc1), 65.1 (C-1 of Fru), 64.6 (C-6 of Glc-1), 63.2 (C-6 of Fru), 62.4 (C-6 of Glc2), 20.9 (Ac); FABMS m/z $823[\mathrm{M}+\mathrm{H}]^{+}, 845$ [M + $\mathrm{Na}{ }^{+}$.

Dalmaisiose B (7): amorphous powder, $[\alpha]^{23} \mathrm{D}-46.0^{\circ}$ (c $0.49, \mathrm{MeOH}) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\text {max }}(\log \epsilon) 210(4.43), 228$ (4.55), 300 (4.64), 309 (4.66); ${ }^{1}$ H NMR, see Table 2; ${ }^{13} \mathrm{C}$ NMR, see Table 5; FABMS m/z $1293[\mathrm{M}+\mathrm{H}]^{+}, 1315[\mathrm{M}+\mathrm{Na}]^{+}$

Dalmaisiose C (8): amorphous powder, $[\alpha]^{23}{ }_{\mathrm{D}}-67.8^{\circ}$ (c $0.20, \mathrm{MeOH}) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\text {max }}(\log \epsilon) 220(4.53), 232(4.54)$, 298 (4.48), 323 (4.54); ${ }^{1} \mathrm{H}$ NMR, see Table 2; ${ }^{13} \mathrm{C}$ NMR, see Table 5; FABMS m/z $1375[\mathrm{M}+\mathrm{Na}]^{+}$.

Dalmaisiose D (9): amorphous powder, $[\alpha]^{23}{ }_{D}-41.3^{\circ}$ (c $0.99, \mathrm{MeOH}) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\text {max }}(\log \epsilon) 228$ (4.50), 300 (4.59), 309 (4.62); ${ }^{1} \mathrm{H}$ NMR, see Table 2; ${ }^{13} \mathrm{C}$ NMR, see Table 5; FABMS m/z 1273 [M + Na] ${ }^{+}$.

Dalmaisiose E (10): amorphous powder, $[\alpha]^{23}{ }_{D}-69.0^{\circ}$ (c $0.29, \mathrm{MeOH}) ;$ UV $(\mathrm{MeOH}) \lambda_{\max }(\log \epsilon) 230$ (4.61), 299 (4.64), 313 (4.68); ${ }^{1} \mathrm{H}$ NMR, see Table 2; ${ }^{13} \mathrm{C}$ NMR, see Table 5; FABMS m/z 1303 [M + Na] ${ }^{+}$.

Dalmaisiose F (11): amorphous powder, $[\alpha]^{23}{ }_{\mathrm{D}}-45.7^{\circ}$ (c $0.44, \mathrm{MeOH}) ;$ UV $(\mathrm{MeOH}) \lambda_{\text {max }}(\log \epsilon) 229$ (4.58), 298 (4.62), 310 (4.64); ${ }^{1} \mathrm{H}$ NMR, see Table 2; ${ }^{13} \mathrm{C}$ NMR, see Table 5; FABMS m/z $1281[\mathrm{M}+\mathrm{H}]^{+}, 1303[\mathrm{M}+\mathrm{Na}]^{+}$

Dalmaisiose G (12): amorphous powder, $[\alpha]^{23} \mathrm{D}-41.4^{\circ}$ (c $0.89, \mathrm{MeOH}) ;$ UV $(\mathrm{MeOH}) \lambda_{\max }(\log \epsilon) 219(4.46), 233$ (4.48), 297 (4.43), 323 (4.51); ${ }^{1} \mathrm{H}$ NMR, see Table 3; ${ }^{13} \mathrm{C}$ NMR, see Table 5; FABMS m/z $1311[\mathrm{M}+\mathrm{H}]^{+}, 1333[\mathrm{M}+\mathrm{Na}]^{+}$

Dalmaisiose H (13): amorphous powder, $[\alpha]^{23}{ }_{\mathrm{D}}-11.5^{\circ}$ (c $0.86, \mathrm{MeOH}) ; U V(\mathrm{MeOH}) \lambda_{\max }(\log \epsilon) 211(4.64), 229(4.74)$, 300 (4.85), 313 (4.91); ${ }^{12}$ H NMR, see Table 3; ${ }^{13} \mathrm{C}$ NMR, see Table 5; FABMS m/z 1273 [M + Na] ${ }^{+}$

Dalmaisiose I (14): amorphous powder, $[\alpha]^{23} \mathrm{D}-66.2^{\circ}$ (c $1.07, \mathrm{MeOH}) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\text {max }}(\log \epsilon) 230(4.73), 300$ (4.80), 315 (4.84); ${ }^{1} \mathrm{H}$ NMR, see Table 3; ${ }^{13} \mathrm{C}$ NMR, see Table 5; FABMS m/z 1427 [M + H] ${ }^{+}, 1449[\mathrm{M}+\mathrm{Na}]^{+}$

Dalmaisiose J (15): amorphous powder, $[\alpha]^{23} \mathrm{D}-14.5^{\circ}$ (c $0.37, \mathrm{MeOH}) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\text {max }}(\log \epsilon) 230$ (4.70), 301 (4.77), 316 (4.83); ${ }^{1} \mathrm{H}$ NMR, see Table 3; ${ }^{13} \mathrm{C}$ NMR, see Table 5; FABMS m/z $1239[\mathrm{M}+\mathrm{H}]^{+}, 1261[\mathrm{M}+\mathrm{Na}]^{+}$

Dalmaisiose K (16): amorphous powder, $[\alpha]^{23} \mathrm{D}-60.3^{\circ}$ (c $0.68, \mathrm{MeOH}) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\text {max }}(\log \epsilon) 220$ (4.64), 231 (4.67), 300 (4.69), 318 (4.73); ${ }^{1} \mathrm{H}$ NMR, see Table 3; ${ }^{13} \mathrm{C}$ NMR, see Table 5; FABMS m/z 1457 [M + H] ${ }^{+}, 1479[\mathrm{M}+\mathrm{Na}]^{+}$

Dalmaisiose L (17): amorphous powder, $[\alpha]^{23} \mathrm{D}-19.9^{\circ}$ (c $0.47, \mathrm{MeOH}) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\max }(\log \epsilon) 220$ (4.60), 231 (4.62),

300 (4.64), 319 (4.73); ${ }^{1} \mathrm{H}$ NMR, see Table 4; ${ }^{13} \mathrm{C}$ NMR, see Table 5; FABMS m/z 1291 [M + Na] ${ }^{+}$

Dalmaisiose M(18): amorphous powder, $[\alpha]^{23} \mathrm{D}-10.7^{\circ}$ (c $0.29, \mathrm{MeOH}) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\text {max }}(\log \epsilon) 220(4.62), 231(4.63)$, 300 (4.65), 320 (4.74); ${ }^{13}$ H NMR, see Table 4; ${ }^{13} \mathrm{C}$ NMR, see Table 5; FABMS m/z $1311[\mathrm{M}+\mathrm{H}]^{+}, 1333[\mathrm{M}+\mathrm{Na}]^{+}$.
Dalmaisiose N(19): amorphous powder, $[\alpha]^{23} \mathrm{D}-67.9^{\circ}$ (c $0.40, \mathrm{MeOH}) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\max }(\log \epsilon) 231$ (4.58), 300 (4.57), 318 (4.63); ${ }^{1} \mathrm{H}$ NMR, see Table 4; ${ }^{13} \mathrm{C}$ NMR, see Table 5; FABMS m/z 1479 [M + Na] .
Dalmaisiose O (20): amorphous powder, $[\alpha]^{23} \mathrm{D}-61.5^{\circ}$ (c 1.17, MeOH); UV (MeOH) $\lambda_{\text {max }}(\log \epsilon) 219$ (4.68), 234 (4.69), 297 (4.65), 325 (4.75); ${ }^{1} \mathrm{H}$ NMR, see Table 4; ${ }^{13} \mathrm{C}$ NMR, see Table 5; FABMS m/z 1487 [M + H] ${ }^{+}, 1509[\mathrm{M}+\mathrm{Na}]^{+}$.

Dalmaisiose \mathbf{P} (21): amorphous powder, $[\alpha]^{23} \mathrm{D}-61.8^{\circ}$ (c $0.33, \mathrm{MeOH}) ;$ UV (MeOH) $\lambda_{\text {max }}(\log \epsilon) 219$ (4.63), 232 (4.63), 298 (4.59), 323 (4.67); ${ }^{1} \mathrm{H}$ NMR, see Table 4; ${ }^{13} \mathrm{C}$ NMR, see Table 5; FABMS m/z 1467 [M + Na]
Acid Hydrolysis of Compounds 1-4. Compound 1 (30 mg) was stirred with 2 N aqueous $\mathrm{HCl}(3 \mathrm{~mL})$ and dioxane (3 mL) at $100{ }^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was extracted with diethyl ether. From the $\mathrm{H}_{2} \mathrm{O}$ layer, $\mathrm{D}-\mathrm{gl}$ ucose ($\mathrm{t}_{\mathrm{R}} 12.1 \mathrm{~min}$) and L-rhamnose ($t_{R} 7.6 \mathrm{~min}$) were detected by GC (Supelco SPB-1, $\left.0.25 \times 30 \mathrm{~m}, 215^{\circ} \mathrm{C}\right)$. The diethyl ether layer afforded compound la (7 mg) as an alycone. 1a was dissolved in methanol and methylated by diazomethane-diethyl ether solution to afford methyl ether $\mathbf{1 b}(7 \mathrm{mg})$. Compounds $\mathbf{2}(2 \mathrm{mg})$, $3(2 \mathrm{mg})$, and $4(10 \mathrm{mg})$ were hydrolyzed in the same way. The sugar residues from 1-4 were identified in the same way as described for the oligosaccharide mentioned below. Compound 2 afforded la (1 mg), D-glucose, L-rhamnose, and sinapinic acid, and la was identified by HPLC [ODS, 4.6 mm $\times 25 \mathrm{~cm}, \mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}$ (32.5:67.5), $1.0 \mathrm{~mL} / \mathrm{min}$, UV 260 nm] and sinapinic acid ($\mathrm{t}_{\mathrm{R}} 8.4 \mathrm{~min}$) was identified by HPLC [ODS, $4.6 \mathrm{~mm} \times 25 \mathrm{~cm}, \mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}(22.5: 77.5), 1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}$ 260 nm]. Compound 3 afforded D-glucose and L-rhamnose. Compound $\mathbf{4}$ afforded $\mathbf{4 a}(4 \mathrm{mg})$ as an aglycone and D-glucose. 1a: amorphous powder, ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $\delta 8.13$ (1H, dd, J $=8,1.5 \mathrm{~Hz}, \mathrm{H}-5), 7.91(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=8,1.5 \mathrm{~Hz}, \mathrm{H}-7), 7.86(1 \mathrm{H}$, $\left.\mathrm{dd}, \mathrm{J}=8,1.5 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 7.72(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8,1.5 \mathrm{~Hz}, \mathrm{H}-8), 7.58$ ($1 \mathrm{H}, \mathrm{td}, \mathrm{J}=8,1.5 \mathrm{~Hz}, \mathrm{H}-6$), $7.33\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 7.31$ (1H, overlapped, $\mathrm{H}-3^{\prime}$); ${ }^{13} \mathrm{C}$ NMR (DMSO-d d_{6}) $\delta 172.5$ (C-4), 165.1 (C-2), 155.3 (C-11), 154.0 (C-9), 144.9 (C-1'), 142.7 (C2^{\prime}), 134.9 (C-7), 126.4 (C-6), 125.4 (C-5), 124.7 (C-4'), 123.9 (C10), 121.2 ($\mathrm{C}-3^{\prime}$), 118.3 ($\mathrm{C}-8$), 114.0 ($\left.\mathrm{C}-6^{\prime}\right), 113.8$ ($\mathrm{C}-5^{\prime}$), 104.6 (C-3); FABMS m/z 281 [M + H] ${ }^{+}$. 4a: amorphous powder, ${ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}) $\delta 8.05$ (1 H , dd, J $=8,2 \mathrm{~Hz}, \mathrm{H}-7$), 7.92 (1 H , dd, J $\left.=8,2 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 7.82(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=8,2 \mathrm{~Hz}, \mathrm{H}-5), 7.74$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8,2 \mathrm{~Hz}, \mathrm{H}-4$), $7.49(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=8,2 \mathrm{~Hz}, \mathrm{H}-6), 7.40$ ($1 \mathrm{H}, \mathrm{td}, \mathrm{J}=8,2 \mathrm{~Hz}, \mathrm{H}-4^{\prime}$), 7.13 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-10$), 7.07 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ $\left.=8,2 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 7.02\left(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=8,2 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}$) $\delta 177.1$ (C-3), 160.7 (C-2), 156.5 (C-9), 155.8 (C2^{\prime}), 134.0 (C-5), 132.5 ($\mathrm{C}-4^{\prime}$), 128.5 (C-6'), 125.1 (C-6), 124.6 (C-7), 123.1 (C-8), 119.4 (C-5'), 118.3 (C-4), 117.7 (C-1'), 117.0 (C-3'), 111.0 (C-10); FABMS m/z 239 [M + H]
Hydrolysis of Oligosaccharides 5 and 7-21. Each sample (2 mg) was stirred with 1 N aqueous $\mathrm{NaOH}(50 \mu \mathrm{~L})$ at $65{ }^{\circ} \mathrm{C}$ for 1 h . After acidification with $1 \mathrm{~N} \mathrm{HCl}(100 \mu \mathrm{~L})$, the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(500 \mu \mathrm{~L})$ and extracted with EtOAc ($100 \mu \mathrm{~L}$). The EtOAc layer was washed with $\mathrm{H}_{2} \mathrm{O}$ ($500 \mu \mathrm{~L}$). To the EtOAc Iayer was added O-(4-nitrobenzyl)$\mathrm{N}, \mathrm{N}^{\prime}$-diisopropylisourea (NBDI) (3 mg), and the reaction mixture was stirred for 1 h at $65{ }^{\circ} \mathrm{C}$. From the reaction mixture, acetic acid ($\mathrm{t}_{\mathrm{R}} 9.4 \mathrm{~min}$) was detected from $\mathbf{5}, \mathbf{7 - 1 4}$, 16, and 18-20, p-coumaric acid ($\mathrm{t}_{\mathrm{R}} 14.9 \mathrm{~min}$) was detected from $\mathbf{5}, \mathbf{7}, \mathbf{9}, \mathbf{1 0}, \mathbf{1 1}$, and $\mathbf{1 3 - 1 9}$, ferulic acid ($\mathrm{t}_{\mathrm{R}} 15.8 \mathrm{~min}$) was detected from 8, 10, 11, 12, and 14-21, benzoic acid ($\mathrm{t}_{\mathrm{R}} 22.8$ min) was detected from $\mathbf{7 - 2 1}$, and cinnamic acid ($\mathrm{t}_{\mathrm{R}} 31.9 \mathrm{~min}$) was detected from 5 by HPLC [Develosil Ph-A, $4.6 \mathrm{~mm} \times 25$ $\left.\mathrm{cm}, \mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}(45: 55), 1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{UV} 273 \mathrm{~nm}\right]$. The $\mathrm{H}_{2} \mathrm{O}$ layer was passed through a column equipped with Amberlite IRA-60E + IR-120B (1:1) ($7 \mathrm{~mm} \times 7 \mathrm{~cm}$) and eluted with $\mathrm{H}_{2} \mathrm{O}$. The $\mathrm{H}_{2} \mathrm{O}$ elute was concentrated and dried in a small sample tube, $0.5 \mathrm{~N} \mathrm{HCl}(50 \mu \mathrm{~L})$ was added, and the mixture was
warmed for 10 min at $100^{\circ} \mathrm{C}$. The reaction mixture was passed though a column equipped with Amberlite IRA-60E ($7 \mathrm{~mm} \times$ 5 cm), eluted with $\mathrm{H}_{2} \mathrm{O}$, and concentrated and dried in a small tube. D-Cysteine methyl ester in pyridine ($3 \mathrm{mg} / 25 \mu \mathrm{~L}$) was added, and the mixture was stirred for 1.5 h at $65^{\circ} \mathrm{C}$. To the reaction mixture were added hexamethyld disilazane ($15 \mu \mathrm{~L}$) and trimethylsilyl chloride ($15 \mu \mathrm{~L}$), and the mixture was stirred for 30 min at $65^{\circ} \mathrm{C}$. The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with hexane. From the hexane extract, D -glucose ($\mathrm{t}_{\mathrm{R}} 12.1 \mathrm{~min}$) and D -fructose ($\mathrm{t}_{\mathrm{R}} 8.9 \mathrm{~min}$) were detected from 5 and 7-21, and L-rhamnose ($t_{R} 7.4 \mathrm{~min}$) was detected from 7-12, 14, 16, 19, 20, and 21 by GC (Supelco SPB-1, $0.25 \mathrm{~mm} \times 30 \mathrm{~m}, 215^{\circ} \mathrm{C}$). The t_{R} of L -glucose, I-fructose, and D-rhamnose was $11.3,9.8$, and 7.6 min , respectively. ${ }^{7}$

References and Notes

(1) Kobayashi, W.; Miyase, T.; Suzuki, S.; Noguchi, H.; Chen, X.-M. J. Nat. Prod. 2000, 63, 1066-1069, and references therein.
(2) Saitoh, H.; Miyase, T.; Ueno, A. Chem. Pharm. Bull. 1994, 42, 18791885.
(3) Hara, S.; Okabe, H.; Mihashi, K. Chem. Pharm. Bull. 1986, 34, 18431845.
(4) Paolo, E. R. D.; Hamburger, M. O.; Stoeckii-Evans, H.; Rogers, C.; Hostettmann, K. Helv. Chim. Acta 1989, 72, 1455-1462.
(5) Hansen, P. E. Org. Magn. Reson. 1979, 12, 109-142.
(6) Pourfarzam, M.; Bartlett, K. J. Chromatogr. 1991, 570, 253-276.
(7) Retention times for D-rhamnose and L-fructose were obtained from their enantiomers (L-rhamnose + L-cysteine methylester, D-fructose + L-cysteine methyl ester).
NP010434N

[^0]: * To whom correspondence should be addressed. Tel/F ax: +81-54-2645661. E-mail: miyase@ys7.u-shizuoka-ken.ac.jp.

[^1]: a Overlapped with other signals ROEs were observed between protons that have the same letter (\#, (\#, $, \uparrow, \pm, \uparrow)$ in each column. Long-range correlations were observed between protons and carbons that have the same letter ($\mathrm{A}, \mathrm{B}, \ldots, \gamma, \delta$) in the same compounds in Table 5. ${ }^{\mathrm{b}}$ Assigned with the aid of HOHAHA difference, ${ }^{1} \mathrm{H}-^{1} \mathrm{H}$ COSY, HMQC, and HMBC spectra.

[^2]: a Overlapped with other signals ROEs were observed between protons that have the same letter ($\#, *, \S, t, \pm, \uparrow$) in each column. Long-range correlations were observed between protons and carbons that have the same letter ($\mathrm{A}, \mathrm{B}, \ldots, \gamma, \delta$) in the same compounds in Table 5. ${ }^{\text {b }}$ Assigned with the aid of HOHAHA difference, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, HMQC, and HMBC spectra.

